
Automatic image analysis and extraction of cell cycle parameters
in stem cells with FUCCI expression

J. Yu (jy380@cam.ac.uk), University of Cambridge, Thesis for Computational Biology MPhil

Project Supervisor: Pietro Cicuta, Course Director: Stephen Eglen

August 8, 2017

Contents

I Introduction: 3
I .1 FUCCI reporter system 3
I .2 Research overview 3
I .3 Research objectives 3

II Automatic image analysis: 4
II .1 Purpose of design: 4
II .2 Data preparation: 4

II .2.1 Experiment 4
II .2.2 Channels in ‘.movie’ file . . . 4
II .2.3 Automatic video generator . 5

II .3 Program design: 5
II .3.1 Initialization 5
II .3.2 Region selection 5
II .3.3 Flow chart: 6
II .3.4 Analysis method 7
II .3.5 Mask building: 7
II .3.6 Fluorescences measure 7

II .4 Segmentation techniques: 7
II .4.1 The ‘combination algorithm’: 8
II .4.2 Filtering method: 8
II .4.3 Edge detection: 9

II .5 Results evaluation: 11
II .5.1 Calculate similarity 11

III Extraction of cell cycle parameters with
FUCCI expression 14
III .1 Gating information: 14
III .2 Manual selection method: 14

III .2.1 General process: 14
III .2.2 Curve fitting: 15
III .2.3 Gating threshold: 15

III .3 Automatic method: 16
III .3.1 General process: 16
III .3.2 Results of automatic analy-

sis methods: 17
III .4 Compare with the manual selection

and automatic analysis method: . . . 17
III .4.1 Method comparison: 17
III .4.2 Results comparation: 17

IV Discussion: 21
IV .1 Green channel problem - calculat-

ing intensive local maximum to en-
hance the peak region 21

IV .2 Cell cluster segmentation - using
edge-highlighted method separate
individual cell in a cluster 21

IV .3 Dead cell recognition - building a
machine learning mask database . . 21

V Conclusions and future work: 22
V .1 Conclusion 22
V .2 Future work 22

VI Acknowledgements: 22

VIIAppendix I: Program code and scripts 24
VII .1Automatic image analysis- Matlab

code 24
VII .2Scripts in ImageJ 37
VII .3Scripts in R 38

VIIIAppendix II: Additional figures 42

Word count: 10469

List of Figures

1 Dynamic color change of the
FUCCI Cell Cycle with general
procession[1] 3

2 Channels in a frame (’.movie’ file) . 4
3 Separate video of bf, green, red

channel 5
4 Flow chart of the code to automatic

mask building and intracellular flu-
orescence measuring 6

5 Pipeline of 20 combination algo-
rithms 8

6 Process of comparing auto-
segmented mask to the standard
mask 11

7 Schematic diagram of calculating
similarity degree 11

8 Results of the binary gradient im-
age (BGI) with 20 combination al-
gorithms. Each BGI is generated
by one combination algorithm us-
ing the algorithm on rows and
columns. 12

9 The similarity degree table of cell
masks generated by 20 BGIs com-
pared to the standard mask, the
highest similarity degree represents
the most standard cell mask gener-
ated by the corresponding BGI. . . . 13

10 Defination of the gating informa-
tion to represent the different cell
cycle phases from the imaging data,
the typical phases are recorded as
‘G1’, ‘G1/S’ and ‘S/G2/M’. (this
figure is adapted from [1], re-edited
by J.Yu) 14

11 The red dash-line square represents
the region of interest (ROI) 14

12 Select a small circle within the cell
to cover the green and red signal in
each frame 15

13 Results of recorded data in Step 3,
difficult to add gating informaiton
in these results 15

14 Results of two-term Gaussian fit-
ting for the data from Setp 3 with
its gatting information, the green
and red peak regions are more ob-
vious 15

15 Automatic mask tracking with time 16
16 Auto-mask1: Gussian-canny 16
17 Auto-mask2: Laplacian-sobel 16
18 Auto-mask3: Motion-zerocross . . . 16
19 Results of comparing the auto- and

manual- method (red channel signal). 18
20 Results of comparing the auto- and

manual- method (green channel
signal). 19

21 Results of comparing the auto- and
manual- method (2i and serum +
LIF media) 20

22 Process of adding edge-highlighted
mask to separate individual cell in
a cell cluster 21

23 Photos for FUCCI experiment set up 42
24 General process for automatic im-

age analysis 42

Abstract:

Fluorescent Ubiquitination-based Cell Cycle Indi-
cator (FUCCI) can help characterise the cell cy-
cle phase according to red and green fluorescence
signals. Here, we design a customized automatic
image analysis system to help us efficiently char-
acterise the cell phase with FUCCI expression.
We successfully extract the relevant parameters
from a large amount of imaging data by using
a mask-based segmentation technique. We use
a digitalized method to compare the quality of
the cell mask generated by using different com-
bination algorithms. The combination algorithms
are composed of a personalized imaging segmen-
tation procedure combining different filters and
edge detection tools. The analysed results from
the automated method are evaluated by com-
paring against a manual selection method. The
results show that the fluorescence signal curve
fitting generated by automated method matches
well with the manual approach, especially at the
peak regions of the red fluorescence signals.

I Introduction:

I .1 FUCCI reporter system

Fluorescent Ubiquitination-based Cell Cycle Indi-
cator (FUCCI) is a set of fluorescent probes which
enables the visualisation of cell cycle progression
in living cells. [1] The cell cycle refers to the dif-
ferent stages in the life of the cell. There are two
stages of the cell cycle: interphase and mitosis (de-
picted in Figure 1 1). Interphase is the longest
stage of the cell cycle. It can be broken down into
three phases: G1, S and G2. Each phase carries out
a specific function. G1 is the first growth phase
where the cell produces organelles, such as ribo-
somes and proteins [4]. The S phase stands for
synthesis in which DNA synthesis, DNA replica-
tion and chromosome duplication occur. G2 is the
second growth phase where the cell is preparing
for mitosis. Mitosis (M phase) is when active cell
division occurs. After M phase, each of the daugh-
ter cells will start the cell cycle again.

Figure 1: Dynamic color change of the FUCCI Cell
Cycle with general procession[1]

FUCCI cells are especially well-suited for real-
time spatio-temporal imaging of their cell cycle
dynamics [6, 7, 22]. In particular, we can mea-
sure the time each cell spends in each phase.

1Figure 1 is adapted from the manual of the Premo FUCCI
Cell Cycle Sensor, ThermoFisher Scientific, re-edited by J.Yu.

The FUCCI reporter system uses two distinct
fluorescence-proteins to visualise the cell cycle.
mKO2-Cdt1 emits a red signal during the G1
phase. Once the cell enters the S phase, it pro-
duces mAG-Geminin which emits a green signal
and deactivates mKO2-Cdt1. The cell deactivates
the mAG-Geminin once the G1 phase starts anew
[4]. These properties of the FUCCI cells help us
figure out which phase the cell is in.

I .2 Research overview

The stem cell division rate, population and phase
duration are important quantities in biology re-
search. They help predict cellular properties, such
as differentiation path, throughout its life. [14, 17].
The motivation of the project is to study the cell
cycle phase (G1, S, G2 and M) durations in mouse
embryonic stem (mES) cells at single cell resolu-
tion using the FUCCI reporter system. Cell cy-
cle dynamics during cell fate changes have not yet
been directly measured in the mES cell literature.
Thus no clear understanding of the cell cycle pro-
gression and the execution of cell fate choices has
been established. [14] Our experiment introduces
an imaging program developed in-house for mul-
tiple hours tracking and imaging of single stem
cells with high throughput.

I .3 Research objectives

In this report, we describe a new automated
program which combines filtering and edge-
detection algorithms to measure the fluorescence
of each cell individually. The program automat-
ically analyses the data to compute the duration
of each cell cycle phase. The results are evalu-
ated by comparing against the manual approach.
In summary, the purpose of designing this auto-
mated image analysis system includes:

• developing a new automated image analysis
program to better segment individual cells

• extracting relevant parameters from the anal-
ysis to characterise cells in each of their
phases.

3

https://www.thermofisher.com/order/catalog/product/P36237
https://www.thermofisher.com/order/catalog/product/P36237

II Automatic image analysis:

II .1 Purpose of design:

Building an automatic image analysis system is
important because a large amount of imaging data
is generated from the experiment. Each FUCCI
experiment will require at least 6-7 days to finish
(2 days for cell preparation, 2-3 days for imaging
and 2 days for data collection). Finally, all imag-
ing data will be stored in a database for analysis.
However, like other experiments, the FUCCI ex-
periment does not always get perfect data from
the test. This encouraged us to build an automatic
analysis method to help us perform the analysis
of the imaging data so that we can obtain the use-
ful data more efficiently. Currently, more than
five Terabytes (TB) of imaging data is stored on
our server. Dealing with all this data by hand
is impossible, hence in this section, we explain
the design of our automatic image analysis pro-
gram which helps us efficiently deal with the large
amount of data. In addition, building this auto-
matic program can also reduce user bias to make
things more standard across different laboratories.

II .2 Data preparation:

II .2.1 Experiment

The FUCCI experiment2 required maintaining
cells at a healthy state to acquire useful informa-
tion for the cell dynamics study. We also prepared
a high-resolution imaging microscope which is es-
sential for improving the accuracy of the experi-
ment. In our experiment, a microscope platform
compatible incubator, a robust gas regulating and
feeding device were used to image mES cells with
desired optical quality. In order to overcome the
challenge of phototoxicity in the long-term single
cell imaging experiment, we adjusted the shuttle
speed of the fluorescent light exposure and tried
to minimise the total duration and amount of light
exposure to the cell body. We also extended the
time intervals between each fluorescent exposure
to further reduce the exposure of excitation light.

2The experiment is mainly operated by W. Zhai (the PhD
student in our group) and collaborate with the Wellcome
Trust Sanger Institute.

Finally, our imaging software system allows ad-
justment in the fluorescent imaging interval tim-
ings, ensuring flexibility in adjusting to different
fluorescent signal output requirement to address
the biological questions on quantifying the cell
dynamics of mES cells. All the imaging data are
uploaded to the centre server of Biological and
Soft System (BSS Group) in Rutherford building
at Cavendish Laboratory on West Cambridge site.
The photos of experiment set up are shown in ad-
ditional figures in Appendix II.

II .2.2 Channels in ‘.movie’ file

The original imaging data is stored in a cus-
tomised format file called ‘.movie’ file. A se-
ries of ‘.movie’ files were stored in a folder to
record the data for each set of experiments. Each
‘.move’ file is the recording from a particular field
of view called a ‘frame’. Each movie folder con-
tains around 100-200 frames and each frame con-
tains 9 channels (shown in Figure 2). One frame
is collected in 15 minutes, hence an entire movie
folder takes 25-50 hours to record.

Figure 2: Channels in a frame (’.movie’ file)

In each frame, channels 1 through 5 are bright
field (bf) channels, which contain an image of
the stem cell taken though an optical microscope.
Channels 1 through 5 are captured sequentially in
a very short timespan with the intent of selecting
the best image for analysis. Channel 6 is captured
under no lighting to serve as a background cal-
ibration for the green signal (channel 7), which
records the signal for ‘mAG-Geminin’. Channel
8 is captured under no lighting to serve as a back-
ground calibration for the red signal (channel 9),

4

which records the signal for ‘mKO2-Cdt1’. We
subtract the background channels 6 and 8 from
channels 7 and 9, respectively, to reduce the ef-
fects of the environment on our data, improving
the accuracy of our calculations.

II .2.3 Automatic video generator

The ‘.movie’ files are stored in the folder named
by the date of the experiment in ordered. Because
there are multiple stacks in each single frame, the
separate videos for ‘bf’, ‘green’ and ‘red’ chan-
nel are unavailable to watch directly. We wrote a
Macros scripts in ImageJ [9] to automatic transfer
the stacked ‘.movie’ file into three separate chan-
nel videos- bf, green and red (the scripts are at-
tached in Appendix I). Generating separate chan-
nel video can help us preview the general situa-
tion of the experiment. Also, it is helpful for com-
paring the analysis results of green and red fluo-
rescences with the corresponding channel videos.
After separate channel videos are ready, we can be
easier to find the best examples in the experiment
and check the data in a more intuitive way.

Figure 3: Separate video of bf, green, red channel

II .3 Program design:

The main body of the program is written based on
Matlab software 3, the program code is attached in

3MATLAB 8.6, the MathWorks Inc., Natick, MA, 2015

Appendix I. In this section, we will talk about the
general process of the program and the idea of de-
signing our customized automatic image analysis
system. The flow chart of the program is shown
in Section II .3.3.

II .3.1 Initialization

At the beginning of the program, we do param-
eters initialization, including the initial value of
different regions and the necessary variables to
record the coming data. Each read-in imaging
data contains 9 different channels and stored into
a 3-dimensional matrix (x,y,9). The matrix records
the quantitative value for imaging data in each
channel. We consider that the imaging data from
one set of experiment are stored in a series of
‘.movie’ files. The program can help us automatic
search the ordered frames in a movie folder and
record the total number of frames (N). In the fol-
lowing analysis, the program will automatically
look through these N frames in the folder and
record each file name. The searching program can
be paused by hand or an occurring error (for ex-
ample, when the imaging data is missing).

II .3.2 Region selection

One single frame can contain multiple cells on an
image, while we expect to analyse the data using
a single cell approach. Hence we need to select a
region of interest (ROI) on the frame which ide-
ally tracks an individual cell. In order to increase
the accuracy of the tracking process. We combine
the trackmate plugin in the ImageJ with our pro-
gram. This plugin can give us a coordinate posi-
tion of the tracking cells so that we can roughly
record the suitable position of the ROI. The pro-
gram also supports adjusting the region by hand,
the basic tracking is required just in case when the
cell may run out of the region with the time going
by. The reference position of the cell are pre-stored
in an array, also we can determine the size of the
ROI by adjusting the length of the diagonal of the
rectangle region. During the analysis, we ensure
that the ROI should always contain an entire cell.
If the tracked cell is missing, the program will be
paused and start anew.

5

II .3.3 Flow chart:

Figure 4: Flow chart of the code to automatic mask building and intracellular fluorescence measuring

6

II .3.4 Analysis method

In our program, we proposed an active mask seg-
mentation to achieve the single cell analysis. This
segmentation method combines the selection of
filtering and edge detection methods. We start
building our cell masks according to the region of
interest. First, we load the image from the bf chan-
nel and crop the interested region according to the
reference centre. The cropped image is converted
into an eight-bits version so that we can set up
an auto-level threshold generated by the Matlab
function. In the filtering and edge detection part,
we tried more than fifty different options (combin-
ing use different filtering methods and edge de-
tecting methods) to figure out a better-fitted mask,
the results are detailed in Section II .5. After
applying the combination algorithm, we can get
the binary gradient image ready to do an active
mask segmentation. The key principle of building
the final mask includes edge dilation, erosion and
smooth. After the analysis of the current frame
being finished, the program will auto-move to the
next frame until all ‘.movie’ files in the defined
folder have been analysed. The active mask will
be updated in each frame according to the selected
cell in bf channel, then applied to the green and
red channel to calculate the intracellular fluores-
cence under the mask.

II .3.5 Mask building:

The active mask building is based on cell segmen-
tation techniques. The aim of applying different
combination methods is to find a better-fitted
mask for the segmented cell. In order to get
a neat cell mask, there are four further steps
requiring to do after getting the binary gradient
image from the combination algorithms There are
corresponding outputs being attached in Figure 4.
(the right side of the flow chart in Section II .3.3)

Step 1: Dilate the lines. The binary gradient mask
from the edge detecting shows lines of high con-
trast in the image. These lines do not quite delin-
eate the outline of the object of interest. Compared
to the original image, we can notice gaps in the
lines surrounding the object in the gradient mask.

These linear gaps will disappear if the edge de-
tected image is dilated using linear structuring el-
ements (the vertical structuring element followed
by the horizontal structuring element), which we
can create with the strel function.
Step 2: Fill interior gaps. The dilated gradient
mask shows the outline of the cell quite nicely, but
there are still holes in the interior of the cell. To fill
these holes we use the imfill function.
Step 3: Remove connected objects on border.
The interested cell are successfully segmented,
but it is not always the only object that has been
found. Any objects that are connected to the bor-
der of the image can be removed using the imclear-
border function.
Step 4: Smoothen the object. In order to make the
segmented object look natural, we smoothen the
object by eroding the image twice with a diamond
structuring element. We create the diamond struc-
turing element using the strel function. Finally, we
display the segmented individual cell by combin-
ing a mask drawn by the alphamask function.

II .3.6 Fluorescences measure

After we get the segmented individual cell mask
from bf channel, we can apply the mask to its
green and red channel. The densities of the flu-
orescences signal are calculated by the mean of
the sum within the area covered by the applied
cell mask. And then the calculated green and red
signal data and a cropped image of the applied
mask will be stored. All the information is saved
on files. At the end of the analysis, a figure of the
scaled data (a fitting curve of the green and red
signal) will be generated. The generated results
are detailed in Chapter III .

II .4 Segmentation techniques:

Optical microscopy is widely used to quantify sin-
gle cell features, such as cell size or intracellu-
lar densities of fluorescences markers. [19] Au-
tomated image segmentation for cell analysis is
generally a difficult problem due to large variabil-
ity and complexity of the data. Accurate quantifi-
cation of such features critically depends on the
spatial detection of the cell in the image by cell

7

segmentation. In addition, cell images may vary
widely, depending on the type of microscopy and
staining used, as well as the cell type and cell den-
sity. This makes the development of a generally
applicable cell segmentation method a huge chal-
lenge. [11] In our program, we introduced a mask-
based method to achieve the cell segmentation ap-
plied on cells that are growing isolated from other
cells. In the pre-processing of the mask building,
select different filtering method and edge detec-
tion algorithms can give us many options for com-
bination algorithms to build our cell mask. In or-
der to get better-fitted cell masks, we further in-
vestigated the effects of using these combination
algorithms to the final mask of the cell segmenta-
tion. Finally, we use the segmented mask to calcu-
late the densities of fluorescences signal in Gemi-
nin (green) and Cdt1 (red) channel.

II .4.1 The ‘combination algorithm’:

The ’combination algorithm’ mentioned in this
report is composed by a personalized imaging
segmentation procedure combining different fil-
ters and edge detection tools. In our personal-
ized segmentation produce, there are two prereq-
uisite steps to generate the cell mask: Filtering and
edge detecting. For each step, there is a possi-
bility to choose from many different algorithms.
For example, the possible filtering algorithms in-
clude Median, Mean, Gaussian, Laplacian, Mo-
tion etc., the possible edge detection algorithms
include Sobel, Prewitt, Robert, Canny, Zero-cross
etc. [2, 8, 10, 12, 16, 21] We combine these methods
to investigate the ‘Results of the binary gradient
image (BGI) for detecting cell mask with 20 com-
bination algorithms’ shown in Figure 8, in order
that we can optimize the individual cell segmen-
tation. Figure 5 shows the pipeline of the com-
bination algorithms. The region of interest (ROI)
is cropped from the original image which contains
the interested cell. In order to compare the results,
we use an auto-level threshold by applying the
graythresh Matlab function. The graythresh func-
tion computes a global threshold (level) that can
be used to convert an intensity image to a binary
image. After setting the threshold, we do the fil-
tering algorithm to enhance the general shape of

the cell. The filters will produce an interim im-
age, and then we apply the edge detection algo-
rithm to the filtered image. The edge detection al-
gorithm will give us a BGI image which has clear
edge features of the interested cell. By using dif-
ferent BGI images, we will obtain different results
of the segmented mask. 20 individual masks will
be produced if we apply 4 filtering algorithms and
5 edge detecting algorithms. Finally, we can com-
pare the outputs and select the best qualified mask
to do further analysis.

Figure 5: Pipeline of 20 combination algorithms

II .4.2 Filtering method:

A single layer image data can be described as
a 2-D matrix (x,y), where x and y represent the
coordinates of the pixels. Set a filtering method
can help to improve the detectability of important
image details, for example enhancing the edge
of the single cell in the image. There are many
filtering methods and each of them can provide
different effects to the image. They are usually
implemented by convolutions, which means a
process of adding each element of the image to
its local neighbours and weighted by the kernel.
Kernel represents the shape and size of the
neighbourhood to be sampled when calculating.
Depending on the element values, a kernel can
cause a wide range of effects. [13]

8

Mean (average):
Mean filtering is a simple, intuitive and easy to
implement method of reducing noise images. It is
often used to reduce the amount of intensity varia-
tion between one pixel and the next. [15] The idea
of mean filtering is replacing each pixel value in
an image with the mean value of its neighbours
(including itself). This has the effect of eliminating
pixel values which are unrepresentative of their
surroundings. Mean filtering is usually thought
of as a convolution filter based on a 3× 3 square
kernel as below when calculating the mean.

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Square kernel of mean filter

Gaussian:
The Gaussian smoothing operator is another 2-D
convolution operator that is used to ‘blur’ images
and remove detail and noise. [8] In this sense, it
is similar to the mean filter, but it uses a differ-
ent kernel that represents the shape of a Gaussian
function. Each image pixel(x,y) is weighted with
the Gaussian functions as Equation 1:

G(x, y) =
1

2πσ2 e
−

x2 + y2

2σ2 (1)

where the σ is the width parameter of the func-
tion. The idea of Gaussian smoothing is to use
this 2-D distribution as a ‘point-spread’ function,
and this is also achieved by convolution. In two
dimensions, Gaussian functions are rotationally
symmetric, hence the amount of smoothing
performed by the filter will be the same in all
detections.

Laplacian:
The Laplacian is a 2-D isotropic measure of the
second spatial derivative of an image and good
for highlighting regions of rapid intensity change.
[21] The Laplacian L(x,y) of an image with pixel
intensity values I(x,y) is given by Equation 2:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (2)

Since the input image is represented as a set of dis-
crete pixels, we have to find a discrete convolution
kernel that can approximate the second deriva-
tives in the definition of the Laplacian. Two com-
monly used small kernels are shown as below:

0 -1 0

-1 4 -1

0 -1 0
or

-1 -1 -1

-1 8 -1

-1 -1 -1

Square kernel of Laplacian operator

Motion:
Motion blur is the apparent streaking of rapidly
moving objects in a still image. The motion blur is
modelled by convolution with a straight line seg-
ment oriented along the direction of motion and
with a length equal to the image speed times the
exposure duration. [2] The kernel of the motion
filter approximates the linear motion of the im-
age on a discrete grid, with a particular choice to
weight individual pixels close to the line.

II .4.3 Edge detection:

Edge detection is an image processing technique
for finding the boundaries of objects within im-
ages. It is used for image segmentation and data
extraction to reduce the amount of data and filters
out useless information. [10, 16, 18] There are
many methods of edge detections, being grouped
into first- and second-order derivative expression.
The first-order difference operators for estimating
image gradient are proposed in Sobel, Prewitt
and Robert. And the second-order are proposed
in zero-cross. They are computing a measurement
of edge strength such as gradient magnitude,
and then searching for local directional maxima
of the gradient magnitude using estimated local
orientation of the edge as the gradient direction.

Sobel:
The Sobel operator consists of a pair of 3 × 3

9

convolution kernels as shown below (represents
in horizontal and vertical direction, respectively).
The operator is convolved with the original im-
age to calculate approximations of the derivatives.
Pixel(x,y) at each point in the output represents
the estimated absolute magnitude of the spatial
gradient of the input image at that point. [12]

Gx:

-1 0 +1

-2 0 +2

-1 0 +1
Gy:

+1 +2 +1

0 0 0

-1 -2 -1

Sobel operator

Prewitt:
Prewitt operator is similar to the Sobel operator,
particularly used to detect vertical and horizontal
edges in images. At each point in the image, the
result of the Prewitt operator is not only the corre-
sponding gradient vector but also the norm of this
vector. [16]

Gx:

+1 0 -1

+1 0 -1

+1 0 -1
Gy:

+1 +1 +1

0 0 0

-1 -1 -1

Prewitt operator

Robert:
The Roberts operator consists of a pair of 2 × 2
convolution kernels, hence can perform a simpler
and quicker computation for 2-D spatial gradient
measurement on an image. Pixel values at each
point in the output represent the estimated abso-
lute magnitude of the spatial gradient of the input
image at that point. [5]

Gx:

+1 0

0 -1
Gy:

0 +1

-1 0

Robert operator

The first three operators are designed to re-
spond maximally to edges running vertically and
horizontally relative to the pixel grid, one kernel
for each of the two perpendicular orientations.
The kernels can be applied separately to the
input image, to produce separate measurements
of the gradient component in each orientation
(Gx and Gy). Gx and Gy can then be combined
together to find the absolute magnitude of the
gradient at each point and the orientation of
that gradient. The gradient magnitude is given
by G =

√
G2

x + G2
y, and the direction is given

by θ = atan(Gy, Gx). [18] Generally speaking,
the gradient magnitude of operator detection
represents a number giving the greatest rate of
change in light intensity in the direction where
intensity is changing fastest.

Canny:
Different from the first three basic detections
(Sobel, Prewitt and Robert), the Canny edge
detector is a more complex method including a
multi-stage algorithm to detect a wide range of
edges in images. [3] The algorithm first smooths
the image to eliminate and noise. It then finds
the image gradient to highlight regions with high
spatial derivatives, then doing non-maximum
suppression to pick out the best pixel for edges
from multiple possibilities in a local neigh-
bourhood. This is smarter than just applying a
threshold to an operator detection.

Zero-crossing:
A zero-crossing is a point where the sign of math-
ematical function changes. At edge points, there
will be a peak in the first derivative and, equiva-
lently, there will be a zero crossing in the second
derivative. The zero crossing detector looks for
places by finding the zero crossings of the second
derivative of the image intensity. [10] The cross-
ings often occur at ‘edges’ in images where the in-
tensity of the image changes rapidly. Zero cross-
ings always lie on closed contours, and so the out-
put from the zero crossing detector is usually a bi-
nary image with single pixel thickness lines show-
ing the positions of the zero crossing points.

10

II .5 Results evaluation:

Combined use of the different filtering algorithm
and edge detection algorithms can give us almost
infinite choices to describe the cell mask. A sim-
ulation of 20 distinguished binary gradient im-
ages (BGIs) are plotted in Figure 8. These BGIs
can be dilated, filled and smoothed to get an auto-
segmented mask, respectively. Although the com-
puter is good at calculation, the human brain is
still the best objects-detecting machine, especially
for the real life images. In order to evaluate the
quality of our auto-segmented masks, we quan-
titatively compared the auto-segmented masks
with a manual-drawing mask. The manual-
drawing mask is directly depicted from the orig-
inal cell image to be a standard mask. And then,
we calculate the similarity of the comparison to
show how similar our automated mask to the
standard mask (Figure 6).

Figure 6: Process of comparing auto-segmented
mask to the standard mask

II .5.1 Calculate similarity

The detailed process of calculating the similarity
is plotted in Figure 7. We use imfreehand Mat-
lab function to get x,y coordinates of the drawing
points and record the cell mask as a matrix[0, 1].
The area covered by ‘1’s is the mask region. We
store the information of auto-segmented mask as
a matrix called Mauto and manul-drawing mask
as a matrix called Mstandard. We apply a ma-
trix subtraction to produce the similarity matrix
(Mauto − Mstandard). The similarity matrix is com-
posed of three daughter regions (exceed, absent

and overlap). These factors can affect the final
similarity degree. In the similarity matrix, the ex-
ceed region produces ‘1’ and absent region pro-
duces ‘-1’. These two factors can both reduce the
similarity degree, hence we take the sum of the
absolute value. The sum value further divides the
sum of Mstandard to calculate our similarity degree
(s%). The formulae can be written as Equation 3.
Generally speaking, a higher similarity degree in-
dicates a more standard cell mask.

s% =
∑ |Mauto −Mstandard|

∑ Mstandard
× 100% (3)

Figure 7: Schematic diagram of calculating simi-
larity degree

This is a digitalized method to evaluate the
quality of the auto-generated cells mask. The
computer is not powerful to evaluate the imaging
data directly. We digitalize the information from
the image so that the computer can help us make
the decision. By comparing the magnitude of the
similarity degrees, we can automatically find the
most standard mask generated by corresponding
BGIs to do further analysis.

11

Results of the binary gradient images (BGIs) with 20 combination algorithms:

Figure 8 shows the results of the binary gradient images (BGIs) with 20 combination algorithms gen-
erated by combining different filters and edge detection tools. The binary gradient images (BGIs) are
the prerequisites to the cell mask. It helps us show the most prominent differences between all applied
combination algorithms. In each column, we included different filtering methods (Gaussian, Laplacian,
Motion and Disk). In each row, we included different edge detection algorithms (Sobel, Prewitt, Robert,
Canny and Zero-cross). Generally speaking, the canny-BGIs give us the most detailed gradient edge, but
extra noise occurs in the background when it is applied with Laplacian algorithm. The Robert-BGIs use
the simplest operator of the kernel, relatively the detected edges are not detailed enough compare to oth-
ers. The Sobel and Prewitt algorithms are very similar, even combined with different filtering method.
The zero-cross BGIs are especially good at detecting the intracellular gradient changes.

Figure 8: Results of the binary gradient image (BGI) with 20 combination algorithms. Each BGI is gener-
ated by one combination algorithm using the algorithm on rows and columns.

12

Results of the similarity degree for 20 combination algorithms 4:

The similarity degree table in Figure 9 records the similarity of comparing auto-segmented masks with
the standard mask. The auto-segmented masks are started with corresponding BGIs. Because the dif-
ferences of the cell masks are not very perceptible to the human eye, we use a digitalized method to
evaluate their differences. In the table, higher similarity degree value indicates a more standard mask.
By comparing the degree values we can evaluate and find the best fitted BGIs to generate the cell mask
in our example. Three best ‘similarity’ masks in this result are further compared in Chapter III for ex-
tracting cell cycle parameters (Auto mask 1: generated by Gaussian-Canny BGI, Auto mask 2: generated
by Laplacian-Sobel BGI, Auto mask 3: generated by Motion-Zerocross BGI).

Figure 9: The similarity degree table of cell masks generated by 20 BGIs compared to the standard mask,
the highest similarity degree represents the most standard cell mask generated by the corresponding
BGI.

4Note this similarity degree table is based on analysing a specific set of imaging data. We show the relative comparison
results just for an example. In a more general analysis, the similarity degree can be affected by many factors (for example, the
format of the imaging data, the cellular state, density of the background noise, resolution of the microscopy etc.). In our final
analysis, the program will help us choose the most suitable BGI to build the final cell mask.

13

III Extraction of cell cycle parame-
ters with FUCCI expression

In this chapter, we compared two methods to ex-
tract the cell cycle parameters with FUCCI expres-
sion: the manual selection method and the auto-
mated method. In both methods, we refer to the
same gating information which can help us dis-
tinguish different cell cycle phases from the imag-
ing data. Although the manual selection method
is much more straightforward to select the sig-
nal detected by human eye, considering that we
have hundreds and thousands of images in the
database, it is easy to imagine that a manual anal-
ysis of the whole data would be an extremely
hard task. Therefore, the automatic image anal-
ysis program is crucial to be designed to release
the handwork. In order to evaluate the results of
the automatic analysis, we run the results of three
representative methods mentioned in the previ-
ous chapter to compare with the manual selec-
tion method (Auto mask 1- Gaussian canny, Auto
mask 2- Laplacian sobel and Auto mask 3- Motion
zero cross). The results for comparing the man-
ual analysis and automatic analysis has been dis-
cussed at the end of the chapter.

III .1 Gating information:

Since the gene-transfer techniques are highly ef-
ficient, contransduction allowed us to obtain sta-
ble transformants expressing equivalent levels of
Cdt1 (the red fluorescence) and Geminin (the
green fluorescence). In each transformant, red flu-
orescence alternated with green fluorescence in
the nucleus. The cell cycle period is variable, pre-
sumably due to differences in cell density and
serum concentration. [4, 20, 22] Since the green
fluorescence disappears rapidly in late M phase
and the red fluorescence becomes detectable in
early G1 phase, a small gap in fluorescence is ob-
served in newborn daughter cells. By contrast,
during red-to-green conversion, red and green
fluorescence always overlaps to yield a yellow nu-
cleus. [1, 4] In order to extract the parameters of
the cell cycle, we define a suitable gating infor-
mation to represent the different cell cycle phases
from the imaging data (Figure 10). The approx-

imate gating method was advised by Dr. Kedar
Natarajan (European Bioinformatics Institute) and
also mentioned in [1]. The gating information
helps us add the typical cell cycle phases on our
analysed data.

Figure 10: Defination of the gating information to
represent the different cell cycle phases from the
imaging data, the typical phases are recorded as
‘G1’, ‘G1/S’ and ‘S/G2/M’. (this figure is adapted
from [1], re-edited by J.Yu)

III .2 Manual selection method:

III .2.1 General process:

Step 1: select the interested region containing a
single cell. The size of the region should be al-
ways larger than the cell size ensure that the re-
gion is covering the entire cell (Figure 11). The
position of the cell is manually determined by hu-
man eye, accurate but very slow.

Figure 11: The red dash-line square represents the
region of interest (ROI)

Step 2: select a small circle within the cell. The
small circle is chosen manually in each frame and
can be adjusted according to the position of the
cell in each frame- noting the circle can cover as
much as the intensive signal either in the green

14

or red channel. (Figure 12). Tremendous work, if
the movie folder contains thousands of frames(In
this example, we select 100 frames in the whole
movie folder). The interval between each frame is
equal to a real-life time for 15 mins. Hence, 100
frames are recording the real-life time for around
25 hours.

Figure 12: Select a small circle within the cell to
cover the green and red signal in each frame

Step 3: calculate the mean of the sum of the sig-
nal within the small circle in the green and red
channel. The diameter of the small circle can be
adjusted by hand. Normally we set the size of the
small circle tenth of the entire cell. The position
of the circle in each frame is all equal so that the
calculation in the green and red channel can be ex-
tracted at the same time. Each calculated results
are recorded as a scaled value and stored in an ar-
ray. The results of the recorded value are plotted
as Figure 13.

Figure 13: Results of recorded data in Step 3, dif-
ficult to add gating informaiton in these results

III .2.2 Curve fitting:

Step 4: applied the stored data to a two-term
Gaussian fitting. Consider that the data plotted in
Step 3 is uncontentious and fluctuated. It is diffi-
cult to apply a gating information on such kind of
data. The idea is we can apply the process of con-
structing a curve, or mathematical function, that
has the best fit to a series of data points. The curve
fitting can involve either interpolation, where an
exact fit to the data is required, or smoothing, in
which a ‘smooth’ function is constructed that ap-
proximately fits the data. After many trials, we
decided to use a multi-term Gaussian smoothing
method. The fitted curves can be used as an aid
for data visualization to help summarize the re-
lationships among these two variables (green and
red sum). The first Gaussian term can display the
peak of the data ‘mount’ the and the second Gaus-
sian term can help describe the general tendency
of the data. After applying the curve fitting, we
can get smoothed results as Figure 14 (the blue
dotted data in Figure 14 is extracted from the re-
sults in Step 3).

Figure 14: Results of two-term Gaussian fitting for
the data from Setp 3 with its gatting information,
the green and red peak regions are more obvious

III .2.3 Gating threshold:

Step 5: set threshold method for gating infor-
mation. Now it is much easier to apply the gat-
ing information to the smoothed data. Before ap-
plying, we required a threshold method to define

15

start points and end points of the different cell cy-
cle phases. According to the gating information,
the red fluorescence accumulates in G1 and re-
duced in transitional period G1/S. The start and
end points of the red curve are determined by 95%
confidence of the first term in the Gaussian fitting
model. The green fluorescence accumulates in
S/G2/M (approximately setting the threshold to
be 70%-80% of the global maximum value), or oth-
erwise, it can be gated from the end of the G1/S
phase to the start of the next G1 phase (shown in
Figure 14), considering the peak value of the green
curve much more close to the general level.

III .3 Automatic method:

III .3.1 General process:

The detailed process of automatic image analy-
sis has been explained in Chapter II. Generally
speaking, in the automated method, the computer
helps us find the cell and apply the active-mask to
calculate the mean of the sum of green and red
fluorescence under the entire cell (a photo guide
is designed as Figure 24 in Appendix II). Unlike
the manual selection, the auto-segmented mask
do not focus on the intensive region of the flu-
orescence signal. However, it is much clever to
calculate the fluorescence signal within the en-
tire cell. The signal calculation principle is sim-
ilar to the manual selection method, while the
program automated all data storing, multi-term
Gaussian fitting and gating threshold in the auto-
matic method. Figure 15 shows the auto-tracking
mask apply with a different period of time.

Figure 15: Automatic mask tracking with time

Results for automatic analysis methods:

Figure 16: Auto-mask1: Gussian-canny

Figure 17: Auto-mask2: Laplacian-sobel

Figure 18: Auto-mask3: Motion-zerocross

16

III .3.2 Results of automatic analysis methods:

The combination uses of different filtering meth-
ods and edge detecting methods give us many op-
tions for the mask building. Three recommended
methods (based on the top three similarity results
described in Chapter II) are further compared
here by applying the data fitting and gating infor-
mation (Auto mask 1- Gaussian canny, Auto mask
2- Laplacian sobel and Auto mask 3- Motion zero-
cross). The results are shown as Figure 16 to Fig-
ure 18. The fitting functions of the red signal have
slight differences, while the peak values are quite
fixable at around 20-25 frames. Considering that
the peak value of the green curve is much more
close to the general level, the phase of S/G2/M
in automatic results are gated from the end of the
G1/S phase to the next start point of the G1 phase
(when red curve rises again).

III .4 Compare with the manual selection
and automatic analysis method:

III .4.1 Method comparison:

The manual approach can get more obvious peaks
for red and green curve fitting. Because it can fo-
cus on the fluorescences signal within an inten-
sive circle. Flexibly, the focusing position can be
adjusted by hand in each frame. It will cost a
long time to select but it increases the accuracy
of the analysis. The automated method is calcu-
lating the green and red signal within the entire
cell, which the results are more gentle, compared
to the manual selection. Ideally thinking, we can
add an intensive calculation method in our auto-
mated program. For example, add a tracking re-
gion on the green and red channel respectively, so
that we can focus on the signal like a manual se-
lection circle. However, the direct-tracking of the
fluorescence is much more complex. Because the
green and red fluorescences are alternatively oc-
curring on a separate image, makes it easy to lose
the tracking information. Hence, tracking the cell
in a bright filed is the best choice in our imaging
data. Although the main approach of the calcula-
tion is slightly different, they are comparable be-
cause the fluorescences signals are stochastically
distributed within the entire cell.

III .4.2 Results comparation:

The multi-term Gaussian model of these curve fit-
ting is given by Equation 4 5 (a for amplitude, b
for peak centre, c for peak width), in a two-term
Gaussian (n=2, i=1,2), in a three-term Gaussian
(n=3, i=1,2,3). Three-term are required if there is
a second peak trend to appear. For example, the
data collected from the automated method (the
red curve) is better fitted with a three-term Gaus-
sian model, because the curve is trending to rise
again at the final frames.

f (x) =
n

∑
i=1

ai · e
[−(

x− bi

ci
)2]

(4)

The compared curve-fitting results of the auto-
mated and manual method for red and green flu-
orescences, has been shown in Figure 19 and 20
respectively. Generally, the automated curves are
more close to the general level (the changing of the
peak value is more gentle and the ‘curve mount’
is more placid), while the manual method shows
a more obvious peak region. Detailed compare, in
red channel analysis, the peak centres of the main
peak (b1) are very close (all around 25), which in-
dicate the automated method is accurate to calcu-
late the densities of the fluorescences. The peak
amplitude (a1) is similar (all around 0.7), which
means the data strength of the signal is suitable.
The peak widths (c1) in the automated analysis are
generally wider than manual work, but not effec-
tive to find the gating information. In green chan-
nel analysis, the automated curve needs a more
obvious peak value because the peak amplitude
is much lower than the manual method. In sum-
mary, the automated analysis is quite accurate to
fit the data, especially for the red channel signal.
The problem in green channel is that the peak re-
gion is not obvious. This demerit can be fixed by
estimating the strong signal region in the green
channel, to highlight the peaks. (More data analy-
sis results are plotted in Figure 21)

5Note in the multi-term Gaussian model, the first term (a1,
b1, c1) describes the behaviour of the main peak and the sec-
ond term (a2, b2, c2) represents a general tendency of the data.
The third term (a3, b3, c3) is added in case there is a potential
second peak.

17

Results of comparing the automatic analysis and manual selection method (red fluorescence):

Figure 19: Results of comparing the auto- and manual- method (red channel signal).
The peak regions of the red signal are corresponding well with each other.

Gaussian curve fitting 6: f (x) = a1 · e
−(

x− b1

c1
)2

+ a2 · e
−(

x− b2

c2
)2

+ [a3 · e
−(

x− b3

c3
)2

]

Table 1: Parameters of two-term Gaussian smoothed function (red curve fitting)

Describe Manual Gaussian canny Laplacian sobel motion zerocross
a1 Amplitude1 0.72 0.71 0.80 0.69
b1 Peak centre1 23.41 24.64 25.83 24.12
c1 Peak width1 4.94 10.20 18.21 7.52
a2 Amplitude2 5e+11 5e+11 5e+11 5e+11
b2 Peak centre2 -8925 -7832 -7289 -8631
c2 Peak width2 1732 1672 1813 1728
a3 Amplitude3 / 0.87 0.92 0.89
b3 Peak centre3 / 139.22 154.41 142.53
c3 Peak width3 / 23.43 18.14 20.43

6The third term in manual curve is not provided, because there is no second peak in this example

18

Results of comparing the automatic analysis and manual selection method (green fluorescence):

Figure 20: Results of comparing the auto- and manual- method (green channel signal).
The general outputs are close, but manual approach shows more obvious peak regions.

Gaussian curve fitting 7: f (x) = a1 · e
−(

x− b1

c1
)2

+ a2 · e
−(

x− b2

c2
)2

+ a3 · e
−(

x− b3

c3
)2

Table 2: Parameters of two-term Gaussian smoothed function (green curve fitting)

Describe Manual Gaussian canny Laplacian sobel motion zerocross
a1 Amplitude1 0.67 0.31 0.37 0.28
b1 Peak centre1 89.55 80.21 82.32 88.11
c1 Peak width1 13.38 15.23 17.98 14.82
a2 Amplitude2 4e +13 6e +13 6e +13 6e +13
b2 Peak centre2 -3132 -4322 -5432 -5425
c2 Peak width3 2144 1443 1475 1632
a3 Amplitude3 1.03 2.21 2.16 2.08
b3 Peak centre3 45.49 168.34 178.12 159.20
c3 Peak width3 65.44 83.23 98.44 76.58

7The peak centre of first and third term in manual curve is close, hence two gaussian-peaks are merged. That is also the
reason we set up different thresholding method for green signal. Detailed discussed in ‘Gating threshold’ (Section III .2.3)

19

Results of comparing the automatic analysis and manual selection method (additional data analysis)8:

Figure 21: Results of comparing the auto- and manual- method (2i and serum + LIF media)

8The original imaging data is provided by W.Zhai (final year PhD in our group) for her experiment to compare two culture
conditions for cell growth, 2i and serum is named by the cell media+ LIF (Leukaemia inhi ory factor).

20

IV Discussion:

IV .1 Green channel problem - calculating
intensive local maximum to enhance
the peak region

We notice that the peak region of the automated
method in the green signal is not obvious because
they are too close to the background level. In
this case, the manual method works much better
to find a peak region for its intensive calculation.
There is a coming ideal to enhance the peak region
of green signal in the automated method. Instead
of calculating the mean of the sum within the en-
tire mask, we can draw a data map of the green
signal within the cell mask. And then, we find
the local maximum value on the data map using a
smaller area. We use the specific area to calculate
the mean of the sum within that particular region.

IV .2 Cell cluster segmentation - using
edge-highlighted method separate
individual cell in a cluster

In this report, we are focusing on the cell seg-
mentation applied on cells that are growing iso-
lated from other cells. But in many cases, the
cells are sticking together (to form a cell cluster)
during the experiment. The automated mask-
building segmentation is an edge-based segmen-
tation. This method is good at detecting the gen-
eral ‘contour’ of a cell or a cell group. However,
it is not powerful to solve the problem in a cell
cluster. It becomes a big challenge to analysis the
fluorescence signal under the cell mask when we
are required to select an individual cell from the
cell cluster. We are considering some possible so-
lution to divide an individual cell from the cell
clusters. The watershed method is recommended
but it is non-ideal in our routine for problems
of over-segmentation. Hence we tried an edge-
highlighted method (depicted in Figure 22). The
auto-segmented mask is generated by our code,
but it is covering the entire cell cluster. Here we
draw an additional mask for an edge-highlighted
method, this mask is specifically working for de-
tecting the general ‘contour’ of individual cells.
Then we apply these two masks together to get

a combined mask so that we can further separate
the individual cell under the entire mask. How-
ever, this method also highlighted the inactive
area in the cell cluster which contains many dead
cells. The dead cell problem is also discussed in
this section. Further analysis is required to evalu-
ate this method.

Figure 22: Process of adding edge-highlighted
mask to separate individual cell in a cell cluster

IV .3 Dead cell recognition - building a
machine learning mask database

The dead cell problem is another big challenge we
are facing to over come. In current algorithm, the
cell mask is not clever enough to distinguish the
active cell and dead cell. It is not a severe problem
if the cell keeps healthy. But in a real experiment,
the cell is much likely to be dead after a long-time
testing. Normally, the tested cell is not live longer
than two days even given the best condition and
treatment. However, the fluorescence signal may
remain in the cell body even the cell is dead. If we
use the mask to calculate the fluorescence density,
we will include the dead fluorescence which we
really want to avoid.

We discover the phenomenon that the active
cells always keep moving and changing their
shapes, while the dead cell is much more stable
to stay at the previous location. If we can mem-
orize this behaviour, it will be much helpful to
figure out the active cells and dead cells. We are
planning to build a memory database to store the
possible behaviour of the active cell. The reason
we use the adaptive square mask is to reduce the
disk memory and speed up the memorising, as the

21

active cell may have thousands of different trans-
formations. Oppositely thinking, because the sta-
tus of the dead cell is much more stable compared
to the active cell. Instead of memorising the ac-
tive cell, why not to memorise the behaviour of a
dead cell. The database to memorise the dead cell
will be much smaller. And then, we can use the
auto-generated marks from our code to subtract
the dead cell region matching with the database,
to get the wanted region of the active cell.

V Conclusions and future work:

V .1 Conclusion

In this project, we design an automated program
to analyse the imaging data from the FUCCI ex-
periment. The program helps us extract the rele-
vant parameters from the analysis to characterise
the cell phases according to the red and green flu-
orescence signals. The results are evaluated by
comparing against the manual approach. Many
combination methods are investigated to build a
better-fitted mask for individual cell segmenta-
tion. The combination algorithms of Gaussian-
canny, Laplacian-sobel and motion-zerocross are
selected for further comparison. The accuracy
of the automated image analysis is tested against
the manual approach. The results show the auto-
mated program is successful in finding the peak
region in the fluorescence density calculations, es-
pecially for the red channel signals. The multiple-
term Gaussian models fit well with the green and
red fluorescence signal extracted from the imag-
ing data. The model serves to find the gate in-
formation from a cell cycle. In summary, build-
ing the automatic image analysis system helps us
efficiently extract the relevant parameters from a
large amount of data to successfully characterise
the cell phase with FUCCI expression.

V .2 Future work

Several points can be improved in our automated
program in the future. First, the calculation
method of the green fluorescences signal can be
more intensive by finding a local maximum den-
sity. Although the results gained from the red

signal analysis are good-fitted with the manual
work, the intensive calculation method is required
to find a more obvious peak. The auto-segmented
mask is good at individual cell analysis, but the
method of separating an individual cell from the
cell cluster still needs to be further evaluated. The
idea of building a machine learning database to
recognize the active cell and the dead cell has been
discussed, but there is a long way to go to finally
apply the algorithm to our imaging data analysis.
Last but not least, we are considering to develop
the code to be more humanized and generalized
so that it can be used in many other experiments.

VI Acknowledgements:

I would like to express my gratitude to my su-
pervisor, Prof. Pietro Cicuta, for his expert guid-
ance and extraordinary support during the time I
worked on this project. I am also grateful to We-
ichao Zhai, the final year PhD student in our BSS
group, for her help and advice, especially for pro-
viding the imaging data in the part of extracting
the cell cycle parameters with FUCCI expression.
Also thanks to Dr. Kedar Natarajan (European
Bioinformatics Institute) for advising us the gat-
ing information method of the cell cycle.

22

References

[1] H. Kurokawa A. Sakaue-Sawano et al. Visu-
alizing spatiotemporal dynamics of multicel-
lular cell-cycle progression. Cell 132, 487-498,
2008.

[2] D. Blasiak and W. Chan. Motion filter vector
quantization. IEEE Xplore, 1522-4880, 2002.

[3] J. Canny. A computational approach to edge
detection. IEEE Trans. Pattern Analysis and
Machine Intelligence, 8(6):679698, 1986.

[4] P. Bourillot Y. Tapponnier D. Coronado,
M.Godet et al. A short g1 phase is an intrin-
sic determinant of nave embryonic stem cell
pluripotency. Stem Cell Research: 10, 118-13,
2013.

[5] LS. Davis. A survey of edge detection tech-
niques. Computer Graphics and Image Process-
ing, vol 4, no. 3, pp 248-260, 1975.

[6] G. Tong G. Guo, M. Huss et al. Resolution
of cell fate decisions revealed by single-cell
gene expression analysis from zygote to blas-
tocyst. Develop. Cell: 18, 675-685, 2010.

[7] R. Menafra H. Marks, T. Kalkan et al. The
transcriptional and epigenomic foundations
of ground state pluripotency. Cell: 149, 590-
604, 2012.

[8] R.A. Haddad and A.N. Akansu. A class
of fast gaussian binomial filters for speech
and image processing. IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 39,
pp 723-727, 1991.

[9] E. Frise J. Schindelin et al. Fiji: an open-
source platform for biological-image analy-
sis. Nature methods 9(7): 676-682, PMID
22743772, 2012.

[10] S. Sarkar M. D. Heath. A robust visual
method of assessing the relative performance
of edge-detection algorithm. IEEE transctions
on pattern analysis and machine intelligence. Vol.
19, NO. 12, 1997.

[11] E. Mijering. Cell segmentation: 50 years
down the road. IEEE Signal Processing Maga-
zine, pp. 140-145, 2012.

[12] Ostu N.A. Threshold selection method from
gray. IEEE Trans on Systems. Man d Cybe etics,
SMC - 9,9(1):62-66, 1979.

[13] Mark S. Nixon and A. S. Aguado. Feature
extraction and image processing. Academic
Press, 2008, p. 88.

[14] S. Pauklin and L. Vallier. The cell-cycle state
of stem cells determines cell fate propensity.
Cell: 155(1), 135-147, 2013.

[15] I. Pitas and A. N. Venetsanopoulos. Non-
linear digital filters: Principles and applica-
tions. Kluwer Academic, 1990.

[16] J.M.S. Prewitt. ”object enhancement and
extraction” in ”picture processing and psy-
chopictorics”. Academic Press, 1970.

[17] B. Reinius Q. Deng, D. Ramskld and
R. Sandberg. Single-cell rna-seq reveals dy-
namic, random monoallelic gene expression
in mammalian cells. Science: 343, 193-196,
2014.

[18] B. Yu S. Chang and M. Vetlerti. Adaptive
wavelet threshold for image de-noising and
compression. IEEE Trans Image Processing,
9(9):1532-1546, 2000.

[19] F. Rudolf J. Stelling S. Dimopoulos, C.
E. Mayer. Accurate cell segmentation in mi-
croscopy images using membrane patterns.
Bioimage informatics, p. 26442651, 2014.

[20] E.Rodriguez Y.Lin S.Koh, P.Mascalchi et al. A
quantitative fastfucci assay defines cell cycle
dynamics at a single-cell level. The Company
of Biologists Ltd: 130, 512-520, 2017.

[21] R. Weeks. Fundamentals of electronic image
processing. IEEE Press, 1996.

[22] N. Zielke and B.A. Edgar. Fucci sensors:
powerful new tools for analysis of cell pro-
liferation. Dev Biol: 4, 469-487, 2015.

23

VII Appendix I: Program code and scripts

VII .1 Automatic image analysis- Matlab code

The main code - part 1

The first part provides the basic construction of our customized automatic image analysis system. The
general process of the main program including initialization, region selection, mask building, fluores-
cences measure.

1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4
5 %Change the path here to s e l e c t e d the i n t e r e s t e d f o l d e r
6 %The ‘ . movie ’ f i l e s are s tored in the f o l d e r named by
7 %the date of the experiment in ordered .
8 d i r p a t h = ’/Users/JiamingYU/Desktop/ P r o j e c t j y 3 8 0 /data/Pos 3 2i 14Dec2016 ’ ;
9 cellname = ’ s c a n 0 p e t r i 0 p o s i t i o n 0 0 3 . 1 4 Dec2016 14 . 4 7 . 3 5 ’ ; %s t a r t f i l e name

10 %d i r r e s = [d i r p a t h ’/ output/ a n a l y c e l l ’ num2str (cellname)] ;
11
12 s t a r t f r a m e = 1 ; %s e t begin searching place
13
14 %% i n i t i a l i z a t i o n s
15 %searching the f o l d e r to get a l l f i l e names
16 [Fi leName start , PathName , ˜] = u i g e t f i l e ([d i r p a t h ’ /∗ . movie ’] , ’ s e l e c t f i l e ’)

;
17 i n d a f t e r s c a n = s t r f i n d (Fi leName start , ’ ’) ;
18 p e t r i p o s i t i o n = Fi leName star t (i n d a f t e r s c a n (1) +1: i n d a f t e r s c a n (1) +18) ;
19
20 FileNames = d i r ([PathName ’ /∗ ’ p e t r i p o s i t i o n ’ ∗ . movie ’]) ;
21 f o r i = 1 : numel (FileNames)
22 i n d a f t e r s c a n = s t r f i n d (FileNames (i) . name , ’ ’) ;
23 runs (i) = str2double (FileNames (i) . name (5 : i n d a f t e r s c a n (1)−1)) ;
24 end
25 [˜ , I s o r t]= s o r t (runs) ;
26 SelectedNames = {FileNames (I s o r t) . name} ; %Searching the f i l e name
27
28 %record the t o t a l number of ’ . movie ’ f i l e in t h i s f o l d e r
29 endframe = numel (FileNames) ;
30
31 %% i n i t i a l i z e the recording v a r i a b l e s
32 T = endframe−s t a r t f r a m e +1;
33 Red = zeros (T , 1) ;
34 Red s = zeros (T , 1) ;
35 Green = zeros (T , 1) ;
36 Green s = zeros (T , 1) ;
37
38 %% S t a r t reading in the f i r s t movie

24

39 sn = SelectedNames (s t a r t f r a m e) ;
40 f name = [d i r p a t h ’/ ’ sn { : }] ;
41 movie = moviereader (f name) ;
42 imgray1 = movie . read (1) ;
43 f i g u r e ; %show the read in image
44 imshow (imgray1 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0) ;
45
46 %% S e l e c t region of i n t e r e s t (ROI)
47 %conta in the i n t e r e s t e d c e l l
48 disp ’−−− s e l e c t a r e c t a n g l e around the c e l l −−−−−−−−−−−−−− ’
49 r e c t = f i x (g e t r e c t) ;
50 r e c t a n g l e (’ P o s i t i o n ’ , r e c t , ’ edgecolor ’ , ’w’ , ’ Linewidth ’ , 1) ;
51 c l o s e a l l
52
53 %% Set background l e v e l
54 disp ’−−− s e l e c t background−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
55 f i g u r e ;
56 imshow (imgray1 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0) ;
57 bgr= f i x (g e t r e c t) ;
58 c l o s e a l l
59 imc = imcrop (imgray1 , r e c t) ;
60 disp ’−−− c l i c k the i n s i d e of the c e l l −−−−−−−−−−−−−− ’
61 f i g u r e
62 imshow (imc , [])
63 new rectC = f i x (g e t r e c t) ;
64 C1x = round (new rectC (1) +new rectC (3) /2) ;
65 C1y = round (new rectC (2) +new rectC (4) /2) ;
66 c l o s e
67 oldmask = zeros (s i z e (imc)) ;
68 oldmask (C1y , C1x) = 1 ;
69
70 %% apply to the whole movie f o l d e r
71 f o r i = s t a r t f r a m e : endframe
72 sn = SelectedNames (i) ;
73 f name = [d i r p a t h ’/ ’ sn { : }] ;
74 movie = moviereader (f name) ;
75
76 mT = uint16 (zeros ([s i z e (imgray1) , 5])) ;
77
78 f o r k = 1 : 5
79 mT(: , : , k) = movie . read (k) ; %read in b r i g h t f i e l d image
80 end
81 imgray1 = mT(: , : , 1) ;
82 mT c = mT(r e c t (2) : r e c t (2) + r e c t (4) , r e c t (1) : r e c t (1) + r e c t (3) , :) ;
83 bgT c = mT(bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3) , :) ;
84 imc = imcrop (imgray1 , r e c t) ; %image cropped
85 mT c1 = mT c (: , : , 1) ; %s e l e c t f i r s t channel
86

25

87 CellMask = mask canny (mT c1) ; %s e l e c t an algorithm
88 %can be adjusted and connected to part2
89 %CellMask = mask pattern (mT c1 , 1 0) ;
90
91 bwbigMask = f a l s e (s i z e (imgray1)) ;
92 bwbigMask (r e c t (2) : r e c t (2) + r e c t (4) , r e c t (1) : r e c t (1) + r e c t (3)) =

CellMask ;
93
94 %Channel 6 i s captured under no l i g h t i n g to serve as a background

c a l i b r a t i o n f o r the green s i g n a l (channel 7) , which records the
s i g n a l f o r ‘mAG−Geminin ’ . Channel 8 i s captured under no l i g h t i n g

to serve as a background c a l i b r a t i o n f o r the red s i g n a l (channel
9) , which records the s i g n a l f o r ‘mKO2−Cdt1 ’ . We s u b t r a c t the

background channels 6 and 8 from channels 7 and 9 , r e s p e c t i v e l y ,
to reduce the e f f e c t s of the environment on our data , improving
the accuracy of our c a l c u l a t i o n s .

95 Im green = movie . read (6)−movie . read (7) ;
96 Im red = movie . read (8)−movie . read (9) ;
97
98 %background l e v e l in green channel
99 bg G = mean(mean(Im green (bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3))

)) ;
100 %background l e v e l in red channel
101 bg R = mean(mean(Im red (bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3))))

;
102
103 % get f l u o r e s c e n t s i g n a l
104 Green (i) = mean(mean(bwbigMask . ∗ double (Im green)))−bg G ;
105 Red (i) = mean(mean(bwbigMask . ∗ double (Im red)))−bg R ;
106 Green s (i) = sum(sum(bwbigMask .∗ double (Im green))) ;
107 Red s (i) = sum(sum(bwbigMask . ∗ double (Im red))) ;
108
109 %figure , imshow (CellMask) , t i t l e (’ segmented image ’) ;
110 s = s p r i n t f (’%03d ’ , i) ;
111 %namef = [s ’ . png ’] ;
112 f i g = f i g u r e ;
113 imshow (imc , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
114 alphamask (CellMask , [1 1 0] , 0 . 2) ;
115 p r i n t (f ig , s , ’−dpng ’) ;
116 hold o f f ;
117 c l o s e a l l ;
118 %imwrite (f ig , namef) ;
119 %c l o s e a l l ;
120 %savesegmimg (bwbigMask , imgray1 , i , d i r r e s , r e c t , bgr)
121 end
122
123 %% p l o t the green and red f l u o r e s c e n t s i g n a l curve
124 green sum = (Green (s t a r t f r a m e : endframe)) ’ ;

26

125 red sum = (Red (s t a r t f r a m e : endframe)) ’ ;
126
127 f i g u r e ; % f i g u r e of red and green curve
128 %p l o t red
129 red x = 1 : length (red sum) ;
130 red y = red sum/mean(red sum) ;
131 %red y= red sum ./Red ’ ;
132 r e d f = f i t (red x . ’ , red y . ’ , ’ gauss2 ’) ; %apply gaussian f i t t i n g
133 %r e d f = f i t (red x . ’ , red y . ’ , ’ gauss3 ’) ;
134 p l o t (red f , ’ r− ’ , red x , red y) ; %p l o t the Gaussian f i t t i n g curve
135 %l i n e (red x , red y , ’ Color ’ , ’ r ’) %p l o t the o r i g n a l data (in case to compare)
136 xlim ([0 length (red sum)]) ;
137 %ylim ([0 2]) ;
138 grid on ;
139 hold on ;
140
141 %p l o t green
142 green x =1: length (green sum) ;
143 green y = green sum/mean(green sum) ;
144 %green y= green sum ./ Green ’ ;
145 g r e e n f = f i t (green x . ’ , green y . ’ , ’ gauss2 ’) ;
146 %g r e e n f = f i t (green x . ’ , green y . ’ , ’ gauss3 ’) ;
147 p l o t (green f , ’ g ’ , green x , green y) ;
148 %l i n e (green x , green y , ’ Color ’ , ’ g ’) ;
149 hold on ;
150
151 %% Used to show the green and red channel s i g n a l when i t i s necessary
152 % imgray6 = movie . read (6) ;
153 % imgray7 = movie . read (7) ;
154 % imgray8 = movie . read (8) ;
155 % imgray9 = movie . read (9) ;
156 % imgray green = imgray6−imgray7 ;
157 % imgray red = imgray8−imgray9 ;
158 %
159 % imgray green uint8Image = uint8 (255 ∗ mat2gray (imgray green)) ;
160 % imgray red uint8Image = uint8 (255 ∗ mat2gray (imgray red)) ;
161 %
162 % f i g u r e ;
163 % %imshow (imgray6 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0) ;
164 % imshow (imgray green uint8Image , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0) ;
165 % %imshow (imgray8−imgray9 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0) ;
166 %
167 % %f i g u r e ;
168 % %imshow (imgray green uint8Image (r e c t (3) : r e c t (1) , r e c t (2) : r e c t (4))) ;
169 % r e c t 1 = f i x (g e t r e c t) ;
170 % r e c t a n g l e (’ Pos i t ion ’ , rec t1 , ’ edgecolor ’ , ’w’ , ’ Linewidth ’ , 1) ;
171 % c l o s e a l l
172 %

27

173 % imc1 = imcrop (imgray green uint8Image , r e c t 1) ;
174 % imc2 = imcrop (imgray red uint8Image , r e c t 1) ;
175 %
176 % f i g u r e
177 % imshow (imc1 , [])
178 % f i g u r e
179 % imshow (imc2 , [])

The main code - part 2

The second part mainly works on applying different filtering and edge detection algorithms to get binary
gradient images (BGIs). Prepare the BGIs to generate the cell masks.

1
2 %% Read in region of i n t e r e s t (ROI)
3 %preview of the s e l e c t region
4 bgT c1 = bgT c (: , : , 1) ;
5 mT c1 = mT c (: , : , 1) ;
6
7 mT green = mT c (: , : , 6) ;
8 mT red = mT c (: , : , 8) ;
9 %% show the ROI cropped image

10 f i g u r e (1)
11 imshow (mT green , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
12 f i g u r e (2)
13 imshow (mT red , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
14
15 %% The green and red s i g n a l channel
16 mT green uint8Image = uint8 (255 ∗ mat2gray (mT green)) ;
17 mT red uint8Image = uint8 (255 ∗ mat2gray (mT red)) ;
18 %display general mask on green s i g n a l
19 g = f s p e c i a l (’ gaussian ’) ;
20 mT green gaussian = i m f i l t e r (mT green uint8Image , g , ’ r e p l i c a t e ’) ;
21 T gray = graythresh (mT green gaussian) ;
22 mT green gaussian1 = im2bw(mT green gaussian , T gray) ;
23 mT green gaussian2 = i m f i l l (mT green gaussian1 , ’ holes ’) ;
24 f igure , imshowpair (mT green gaussian1 , mT green gaussian2 , ’ montage ’)
25 %display general mask on red s i g n a l
26 g = f s p e c i a l (’ gaussian ’) ;
27 mT red gaussian = i m f i l t e r (mT red uint8Image , g , ’ r e p l i c a t e ’) ;
28 T gray = graythresh (mT red gaussian) ;
29 mT red gaussian1 = im2bw(mT red gaussian , T gray) ;
30 mT red gaussian2 = i m f i l l (mT red gaussian1 , ’ holes ’) ;
31 f igure , imshowpair (mT red gaussian1 , mT red gaussian2 , ’ montage ’)
32
33 %% The b r i g h t f i e l d channel
34 mT c1 uint8Image = uint8 (255 ∗ mat2gray (mT c1)) ;
35 imshow (mT c1 uint8Image , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)

28

36 %c l o s e a l l ;
37
38 %% S t a r t apply d i f f e r e n t f i l t e r i n g algr i thms
39 %gaussian f i l t e r
40 g = f s p e c i a l (’ gaussian ’) ;
41 mT c1 gaussian = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
42 T gray = graythresh (mT c1 gaussian) ;
43 mT c1 gaussian1 = im2bw(mT c1 gaussian , T gray) ;
44 mT c1 gaussian2 = i m f i l l (mT c1 gaussian1 , ’ holes ’) ;
45 f igure , imshowpair (mT c1 gaussian1 , mT c1 gaussian2 , ’ montage ’)
46 %mean (average) f i l t e r
47 g = f s p e c i a l (’ average ’) ;
48 mT c1 average = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
49 %motion f i l t e r
50 g = f s p e c i a l (’ motion ’) ;
51 mT c1 motion = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
52 T gray = graythresh (mT c1 motion) ;
53 mT c1 motion1 = im2bw(mT c1 motion , T gray) ;
54 mT c1 motion2 = i m f i l l (mT c1 motion1 , ’ holes ’) ;
55 f igure , imshowpair (mT c1 motion1 , mT c1 motion2 , ’ montage ’)
56 %disk f i l t e r
57 g = f s p e c i a l (’ disk ’) ;
58 mT c1 disk = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
59 %l a p l a c i a n f i l t e r
60 g = f s p e c i a l (’ l a p l a c i a n ’) ;
61 mT c1 laplac ian = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
62 T gray = graythresh (mT c1 laplac ian) ;
63 mT c1 laplac ian1 = im2bw(mT c1 laplacian , T gray) ;
64 mT c1 laplac ian2 = i m f i l l (mT c1 laplacian1 , ’ holes ’) ;
65 f igure , imshowpair (mT c1 laplacian1 , mT c1 laplacian2 , ’ montage ’)
66 %log f i l t e r
67 g = f s p e c i a l (’ log ’) ;
68 mT c1 log = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
69 %sobel f i l t e r
70 g = f s p e c i a l (’ sobe l ’) ;
71 mT c1 sobel = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
72 T gray = graythresh (mT c1 sobel) ;
73 mT c1 sobel1 = im2bw(mT c1 sobel , T gray) ;
74 mT c1 sobel2 = i m f i l l (mT c1 sobel1 , ’ holes ’) ;
75 f igure , imshowpair (mT c1 sobel1 , mT c1 sobel2 , ’ montage ’)
76 %prewit t f i l t e r
77 g = f s p e c i a l (’ prewit t ’) ;
78 mT c1 prewitt = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
79
80 %show the f i l t e r e d ROI image
81 f igure , imshowpair (mT c1 gaussian , mT c1 average , ’ montage ’)
82 t e x t (0 , 1 5 , ’ Guassian and average f i l t e r ’ , ’ Color ’ , ’ white ’ , ’ FontSize ’ , 1 4) ;
83 f igure , imshowpair (mT c1 motion , mT c1 disk , ’ montage ’)

29

84 t e x t (0 , 1 5 , ’ Motion and disk f i l t e r ’ , ’ Color ’ , ’ white ’ , ’ FontSize ’ , 1 4) ;
85 f igure , imshowpair (mT c1 laplacian , mT c1 log , ’ montage ’)
86 t e x t (0 , 1 5 , ’ Laplacian and log f i l t e r ’ , ’ Color ’ , ’ white ’ , ’ FontSize ’ , 1 4) ;
87 f igure , imshowpair (mT c1 sobel , mT c1 prewitt , ’ montage ’)
88 t e x t (0 , 1 5 , ’ Sobel and prewit t f i l t e r ’ , ’ Color ’ , ’ white ’ , ’ FontSize ’ , 1 4) ;
89
90
91 %% Apply d i f f e r e n t edge d e t e c t i o n algori thms to d i f f e r e n t f i l t e r e d ROI
92 c l o s e a l l ;
93 %gaussian f i l t e r e d ROI
94 f i l t e r e d g e (mT c1 gaussian) ;
95 %average (Mean) f i l t e r e d ROI
96 f i l t e r e d g e (mT c1 average) ;
97 %motion f i l t e r e d ROI
98 f i l t e r e d g e (mT c1 motion) ;
99 %disk f i l t e r e d ROI

100 f i l t e r e d g e (mT c1 disk) ;
101 %l a p l a c i a n f i l t e r e d ROI
102 f i l t e r e d g e (mT c1 laplac ian) ;
103 %log f i l t e r e d ROI
104 f i l t e r e d g e (mT c1 log) ;
105 %sobel f i l t e r e d ROI
106 f i l t e r e d g e (mT c1 sobel) ;
107 %prewit t f i l t e r e d ROI
108 f i l t e r e d g e (mT c1 prewitt) ;

The main code - part 3

The third part used to investigate an individual cell analysis in a single frame.

1
2 %% Analysis an indiv idua l c e l l
3 %num = 1 ;
4 %r e c t = [1 0 9 3 , 6 3 0 , 2 9 2 , 3 1 2] ; %[xmin ymin width height]
5 %bgr = [5 1 0 , 1 2 6 , 1 7 4 , 1 9 8] ; %t e s t i n g l o c a t i o n
6 %get the coordinate p o s i t i o n of the t r a c k i n g c e l l s from ’ TrackMate ’ plugin (

ImageJ) to roughly record the s u i t a b l e p o s i t i o n of the ROI .
7 R cor = csvread (Trackmate out1 . csv) %read in the est imated l o c a t i o n f o r ROI
8 B cor = csvread (Trackmate out2 . csv) %read in the est imated l o c a t i o n f o r

background
9 r e c t = R cor (num) ; %Updating

10 bgr=B cor (num) ;
11
12 imc = imcrop (imgray1 , r e c t) ; %cropping
13 mT = uint16 (zeros ([s i z e (imgray1) , 5])) ;
14 f o r k = 1 : 9
15 mT(: , : , k) = movie . read (k) ;
16 end

30

17 bgT c = mT(bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3) , :) ;
18 mT c = mT(r e c t (2) : r e c t (2) + r e c t (4) , r e c t (1) : r e c t (1) + r e c t (3) , :) ;
19
20 %% Now s t a r t to s e t the parameter according to the s e l e c t e d background
21 %preview of the s e l e c t region
22 bgT c1 = bgT c (: , : , 1) ;
23 mT c1 = mT c (: , : , 1) ;
24 % f i g u r e (1)
25 % imshow (bgT c1 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
26 % f i g u r e (2)
27 % imshow (mT c1 , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
28
29 %% The cropped image i s converted i n t o an eight−b i t s vers ion
30 mT c1 uint8Image = uint8 (255 ∗ mat2gray (mT c1)) ;
31 %imshow (mT c1 uint8Image , [] , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 0 0)
32 c l o s e a l l ;
33
34 %% use d i f f e r e n t f i l t e r to d e t e c t the edge of the image
35 % Sobel f i l t e r and Canny F i l t e r
36 BW1 = edge (mT c1 , ’ sobe l ’) ;
37 BW2 = edge (mT c1 , ’ canny ’) ;
38 BW canny sobel = edge (BW2, ’ sobe l ’) ;
39 f i g u r e (’ p o s i t i o n ’ , [4 0 0 200 800 8 0 0]) ;
40 subplot (3 , 2 , 1)
41 imshowpair (BW1,BW2, ’ montage ’)
42 t i t l e (’ Sobel F i l t e r , Canny F i l t e r ’) ;
43 BW sobel canny = edge (BW1, ’ canny ’) ;
44 subplot (3 , 2 , 2)
45 imshowpair (BW sobel canny , BW canny sobel , ’ montage ’)
46 t i t l e (’ Sobel and Canny combination F i l t e r ’) ;
47
48 %% Prewit t f i l t e r and Roberts F i l t e r
49 BW3 = edge (mT c1 , ’ Prewit t ’) ;
50 BW4 = edge (mT c1 , ’ Roberts ’) ;
51 BW prewit t roberts = edge (BW3, ’ Roberts ’) ;
52 BW roberts prewit t = edge (BW4, ’ Prewit t ’) ;
53 %f i g u r e ;
54 subplot (3 , 2 , 3)
55 imshowpair (BW3,BW4, ’ montage ’)
56 t i t l e (’ Prewit t F i l t e r , Roberts F i l t e r ’) ;
57 subplot (3 , 2 , 4)
58 imshowpair (BW prewitt roberts , BW roberts prewitt , ’ montage ’)
59 t i t l e (’ Prewit t and Roberts combination F i l t e r ’) ;
60
61 %% Log f i l t e r and Zero−c r o s s F i l t e r
62 BW5 = edge (mT c1 , ’ log ’) ; %Laplacian of Gaussian
63 BW6 = edge (mT c1 , ’ zerocross ’) ;
64 BW log zerocross = edge (BW5, ’ zerocross ’) ;

31

65 BW zerocross log = edge (BW6, ’ log ’) ;
66 %f i g u r e ;
67 subplot (3 , 2 , 5)
68 imshowpair (BW5,BW6, ’ montage ’)
69 t i t l e (’ log F i l t e r , zerocross F i l t e r ’) ;
70 subplot (3 , 2 , 6)
71 imshowpair (BW log zerocross , BW zerocross log , ’ montage ’)
72 t i t l e (’ log and zerocross combination F i l t e r ’) ;
73
74
75 %% segement using d i a l a t i o n methods (based on ’Canny F i l t e r ’)
76 %use s t r e l func t ion to eras ion and d i l a t i o n of the image
77 se90 = s t r e l (’ l i n e ’ , 6 , 90) ;
78 se0 = s t r e l (’ l i n e ’ , 6 , 0) ;
79 BWsdil = imd i la te (BW2, [se90 se0]) ;
80 f i g u r e (’ p o s i t i o n ’ , [1 0 0 200 400 4 0 0]) ;
81 subplot (2 , 2 , 1) , imshow (BWsdil) , t i t l e (’ d i l a t e d gradient mask ’) ;
82 %f i l l the hole on the d i l a t i o n image
83 BWdfil l = i m f i l l (BWsdil , ’ holes ’) ;
84 subplot (2 , 2 , 2) , imshow (BWdfil l) ;
85 t i t l e (’ binary image with f i l l e d holes ’) ;
86 %’ imclearborder ’ to s e l e c t the mian c e l l
87 BWnobord = imclearborder (BWdfill , 4) ;
88 subplot (2 , 2 , 3) , imshow (BWnobord) , t i t l e (’ c l eared border image ’) ;
89 % smoothing (Create morphological s t r u c t u r i n g element (STREL))
90 seD = s t r e l (’ diamond ’ , 1) ;
91 BWfinal = imerode (BWnobord , seD) ;
92 BWfinal = imerode (BWfinal , seD) ;
93 subplot (2 , 2 , 4) , imshow (BWfinal) , t i t l e (’ segmented image ’) ;
94
95
96 %% Segmentation using threshold value
97 g = f s p e c i a l (’ gaussian ’) ;
98 mT c1 i t1 = i m f i l t e r (mT c1 uint8Image , g , ’ r e p l i c a t e ’) ;
99 f i g u r e ;

100 subplot (2 , 2 , 1) , imshowpair (mT c1 uint8Image , mT c1 it1 , ’ montage ’)
101 subplot (2 , 2 , 2) , imhis t (mT c1 i t1) ; %see histogram data
102 T gray = graythresh (mT c1 i t1) ; %auto−threshold
103 mT c1 i t2 = im2bw(mT c1 it1 , T gray) ;
104 subplot (2 , 2 , 3) , imshow (mT c1 i t2) ;
105 m T c 1 i t 2 f i l l = i m f i l l (mT c1 it2 , ’ holes ’) ;
106 subplot (2 , 2 , 4) , imshow (m T c 1 i t 2 f i l l) ;
107
108
109 %% Segmentation using adaptive method
110 %10 by 10 blocks
111 mT c1 i t3 = blkproc (mT c1 it1 , [1 0 1 0] , @adaptt) ;
112 f i g u r e ;

32

113 subplot (3 , 2 , 1) , imshow (mT c1 i t3) ;
114 t i t l e (’ Apply adaptive 10 by 10 box ’) ;
115 m T c 1 i t 1 s o b e l = edge (mT c1 it3 , ’ sobe l ’) ;
116 mT c1 it1 canny = edge (mT c1 it3 , ’ canny ’) ;
117 subplot (3 , 2 , 2) , imshowpair (mT c1 i t1 sobe l , mT c1 it1 canny , ’ montage ’)
118 t i t l e (’ Sobel F i l t e r , Canny F i l t e r ’) ;
119 %20 by 20 blocks
120 mT c1 i t3 = blkproc (mT c1 it1 , [2 0 2 0] , @adaptt) ;
121 subplot (3 , 2 , 3) , imshow (mT c1 i t3) ;
122 t i t l e (’ Apply adaptive 20 by 20 box ’) ;
123 m T c 1 i t 1 s o b e l = edge (mT c1 it3 , ’ sobe l ’) ;
124 mT c1 it1 canny = edge (mT c1 it3 , ’ canny ’) ;
125 subplot (3 , 2 , 4) , imshowpair (mT c1 i t1 sobe l , mT c1 it1 canny , ’ montage ’)
126 t i t l e (’ Sobel F i l t e r , Canny F i l t e r ’) ;
127 %30 by 30 blocks
128 mT c1 i t3 = blkproc (mT c1 it1 , [3 0 3 0] , @adaptt) ;
129 subplot (3 , 2 , 5) , imshow (mT c1 i t3) ;
130 t i t l e (’ Apply adaptive 30 by 30 box ’) ;
131 m T c 1 i t 1 s o b e l = edge (mT c1 it3 , ’ sobe l ’) ;
132 mT c1 it1 canny = edge (mT c1 it3 , ’ canny ’) ;
133 subplot (3 , 2 , 6) , imshowpair (mT c1 i t1 sobe l , mT c1 it1 canny , ’ montage ’)
134 t i t l e (’ Sobel F i l t e r , Canny F i l t e r ’) ;
135
136 %% Segmentation using Watershed segmentation
137 mT c1 i t4 = imtophat (mT c1 it1 , s t r e l (’ disk ’ , 5 0)) ;
138 mT c1 i t5 = imadjust (mT c1 i t4) ;
139 f i g u r e ;
140 subplot (3 , 1 , 1) , imshowpair (mT c1 it4 , mT c1 it5 , ’ montage ’) ;
141 T l e v e l = graythresh (mT c1 i t5) ;
142 mT c1 BW = im2bw(mT c1 it5 , T l e v e l) ;
143 mT c1 C = ˜ mT c1 BW ;
144 subplot (3 , 1 , 2) , imshowpair (mT c1 BW , mT c1 C , ’ montage ’) ;
145 mT c1 D = −bwdist (mT c1 C) ;
146 mT c1 D (mT c1 C) = −I n f ;
147 mT c1 L = watershed (mT c1 D) ;
148 %figure , imshow (mT c1 L) ;
149 mT c1 wi = l a b e l 2 r g b (mT c1 L , ’ hot ’ , ’w’) ;
150 %subplot (3 , 1 , 2) , imshow (mT c1 wi) ;
151 subplot (3 , 1 , 3) , imshowpair (mT c1 it1 , mT c1 wi , ’ montage ’) ;
152
153 %% c a l c u l a t e mean and sum of red and green s i g n a l s
154 %CellMask = sege canny (mT c1) ;
155 bwbigMask = f a l s e (s i z e (imgray1)) ;
156 bwbigMask (r e c t (2) : r e c t (2) + r e c t (4) , r e c t (1) : r e c t (1) + r e c t (3)) = BWfinal ;
157 Im green = movie . read (6)−movie . read (7) ;
158 Im red = movie . read (8)−movie . read (9) ;
159 %back ground
160 bg G = mean(mean(Im green (bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3)))) ;

33

161 bg R = mean(mean(Im red (bgr (2) : bgr (2) +bgr (4) , bgr (1) : bgr (1) +bgr (3)))) ;
162 % get f l u o r e s c e n t s i g n a l
163 Green mean = mean(mean(bwbigMask . ∗ double (Im green)))−bg G ;
164 Red mean = mean(mean(bwbigMask .∗ double (Im red)))−bg R ;
165 Green sum = sum(sum(bwbigMask .∗ double (Im green))) ;
166 Red sum = sum(sum(bwbigMask .∗ double (Im red))) ;

The function code - filter edge function:

The filter edge function used to compare the outputs by applying different edge detection algorithms
from the filtered ROI image to provide BGIs, including Sobel, Canny, Prewitt, Robert, Zero-cross etc.

1 funct ion output edge = f i l t e r e d g e (mT c1 tes t)
2 %edge d e t e c t i o n algori thms
3
4 % Sobel algorithm and Canny algorithm
5 BW1 = edge (mT c1 test , ’ sobe l ’) ;
6 BW2 = edge (mT c1 test , ’ canny ’) ;
7 BW canny sobel = edge (BW2, ’ sobe l ’) ;
8 f i g u r e (’ p o s i t i o n ’ , [4 0 0 200 800 8 0 0]) ;
9 subplot (3 , 1 , 1) %f i g u r e p l o t

10 imshowpair (˜BW1, ˜ BW2, ’ montage ’)
11 t i t l e (’ Sobel Edge Detect ion , Canny Edge Detect ion ’) ;
12
13 % Prewit t algorithm and Roberts algorithm
14 BW3 = edge (mT c1 test , ’ Prewit t ’) ;
15 BW4 = edge (mT c1 test , ’ Roberts ’) ;
16 BW prewit t roberts = edge (BW3, ’ Roberts ’) ;
17 BW roberts prewit t = edge (BW4, ’ Prewit t ’) ;
18
19 %f i g u r e ;
20 subplot (3 , 1 , 2)
21 imshowpair (˜BW3, ˜ BW4, ’ montage ’)
22 t i t l e (’ Prewit t Edge Detect ion , Roberts Edge Detect ion ’) ;
23
24 % Log algorithm and Zero−c r o s s algorithm
25 BW5 = edge (mT c1 test , ’ log ’) ; %Laplacian of Gaussian
26 BW6 = edge (mT c1 test , ’ zerocross ’) ;
27 BW log zerocross = edge (BW5, ’ zerocross ’) ;
28 BW zerocross log = edge (BW6, ’ log ’) ;
29
30 %f i g u r e ;
31 subplot (3 , 1 , 3)
32 imshowpair (˜BW5, ˜ BW6, ’ montage ’)
33 t i t l e (’ log Edge Detect ion , zerocross Edge Detect ion ’) ;
34 end

34

The function code - alpha mask function:

The alphamask function works for drawing the cell mask on the bf channel of the original imaging data,
the appearance of the mask can be adjusted by setting the colour parameter and transparent parameter.
This function is based on Andrew Davis’s scripts, 2012, adapted by J.Yu.

1 funct ion hOVM = alphamask (bwMask , colour , transparency , axHandle)
2 % ALPHAMASK: Overlay image with semi−t ransparent mask
3 %
4 % Overlays a semi−t ransparent mask over an image . By d e f a u l t the
5 % c u r r e n t l y displayed f i g u r e i s o v e r l a i n .
6 % Options include overlay colour and opaci ty .
7 % Returns a handle to the overlay mask .
8 %
9 % Usage :

10 % hOVM = alphamask (bwMask , [colour , transparency , axHandle])
11 % bwMask : l o g i c a l matrix represent ing mask
12 % colour : vec tor of three rgb values in range [0 , 1] (opt iona l ;

d e f a u l t [0 0 1])
13 % transparency : s c a l a r in range [0 , 1] represent ing overlay opac i ty (

opt iona l ; d e f a u l t 0 . 6)
14 % axHandle : handle to axes on which to operate (opt iona l ; d e f a u l t

current axes)
15 % hOVM: handle to overlay image i s returned
16 %
17 % See a l s o IMSHOW, CREATEMAS
18 % Check arguments
19 i f ˜ e x i s t (’bwMask ’ , ’ var ’) | | ˜ i s m a t r i x (bwMask) , e r r o r (’bwMask matrix i s a

required argument ’) ; end ;
20 i f ˜ e x i s t (’ colour ’ , ’ var ’) , colour = [0 0 1] ; end ;
21 i f ˜ e x i s t (’ t ransparency ’ , ’ var ’) , t ransparency = 0 . 6 ; end ;
22 i f ˜ e x i s t (’ axHandle ’ , ’ var ’) , axHandle = gca ; end ;
23 i f ˜ i s v e c t o r (colour) | | ˜ i s s c a l a r (transparency) | | ˜ i shandle (axHandle) ,

e r r o r (’One or more arguments i s not in the c o r r e c t form ’) ; end ;
24 maskRange = max(max(bwMask))−min (min (bwMask)) ;
25 i f maskRange ˜= 1 && maskRange ˜= 0 , e r r o r (’bwMask must c o n s i s t only of the

values 0 and 1 ’) ; end ;
26
27 % Create colour image and overlay i t
28 rgbI = c a t (3 , colour (1) ∗ones (s i z e (bwMask)) , colour (2) ∗ones (s i z e (bwMask)) ,

colour (3) ∗ones (s i z e (bwMask))) ;
29 hold on ,
30 hOVM = imshow (rgbI , ’ Parent ’ , axHandle) ;
31 s e t (hOVM, ’ AlphaData ’ , bwMask∗ t ransparency) ; % use mask values as

alpha channel of overlay
32 hold o f f ;

35

The function code - mask pattern function:

The mask pattern function help to change the cell mask into an adaptive version mask, so that we can
reduce the required disk to store the mask, also increase the calculation speed.

1 funct ion Cel lMask Pattern = mask pattern (mT c1 , n) %n i s the block s i z e
2 %give a gaussian f i l t e r
3 g = f s p e c i a l (’ gaussian ’) ;
4 mT c1 gau = i m f i l t e r (mT c1 , g , ’ r e p l i c a t e ’) ;
5
6 %apply the adaptt daughter funct ion
7 BWs = blkproc (mT c1 gau , [n n] , @adaptt) ;
8
9 BWdfil l = i m f i l l (BWs, ’ holes ’) ;

10
11 %’ imclearborder ’ to s e l e c t the mian c e l l
12 BWnobord = imclearborder (BWdfill , 4) ;
13
14 % smoothing (Create morphological s t r u c t u r i n g element (STREL))
15 seD = s t r e l (’ diamond ’ , 1) ;
16 BWfinal = imerode (BWnobord , seD) ;
17 BWfinal = imerode (BWfinal , seD) ;
18 Cel lMask Pattern = BWdfil l ;
19
20 end

The function code - adaptt function:

The adaptt function is a daughter function of the mask pattern function. Apply the adaptive method to a
small region of pixel.

1 funct ion [y] =adaptt (x)
2 i f s td2 (x) <8
3 y = ones (s i z e (x , 1) , s i z e (x , 2)) ;
4 e l s e
5 %y = im2bw(x , graythresh (x)) ;
6 y = zeros (s i z e (x , 1) , s i z e (x , 2)) ;
7 end

The function code - scroll movie function:

The scroll movie function can help read and review the ‘.movie’ file from the folder.

1 funct ion [] = s c r o l l m o v i e (f i lename)
2
3 i f nargin < 1
4 [fi lename , p a t h f i l e] = u i g e t f i l e (’ ∗ . movie ’) ;
5 f i lename = f u l l f i l e (p a t h f i l e , f i lename) ;
6 end

36

7 movieobj = moviereader (f i lename) ;
8 v id eof ig (movieobj . NumberOfFrames , @redraw , movieobj , round (movieobj .

FrameRate)) ;
9 redraw (movieobj , 1) ;

10
11 end

The function code - redraw function:

The redraw function uses to adjust the image fame from the ’.movie’ file.

1 funct ion redraw (movieobj , frame)
2
3 IM = movieobj . read (frame) ;
4 im = IM ;
5 % imshow (imadjust (im , s t r e t c h l i m (im , 0 . 0 0 0 1)) , [])
6 imshow (im , [])
7 s e t (gca , ’ u n i t s ’ , ’ normalized ’) ;
8 t e x t (0 , 0 , [’ frame ’ , num2str (frame)] , ’ Color ’ , ’ r ’ , ’ Units ’ , ’ p i x e l s ’ , ’

Vert ica lAl ignment ’ , ’ bottom ’) ;
9

10 end

VII .2 Scripts in ImageJ

Convert customized ‘.movie’ file into ‘.avi’

The ‘.movie’ files are stored in the folder named by the date of the experiment in ordered. Because
there are multiple stacks in each single frame, the separate videos for ‘bf’, ‘green’ and ‘red’ channel are
unavailable to watch directly. We wrote a Macros scripts in ImageJ to automatic transfer the stacked
‘.movie’ file into three separate channel videos- bf, green and red, here is the attached scripts.

1
2 //Turn on the batch process ing
3 setBatchMode (t rue) ;
4
5 // s e t the s t o r e d i r e c t o r y as a v a r i a b l e
6 d i r e c t o r y = ”S :\\wz271\\ F u c c i C e l l \\270417\\ p e t r i 0 \\” ;
7
8 //get f i l e names
9 fileNames = g e t F i l e L i s t (d i r e c t o r y) ;

10 //fileNums = getLength (fileNames)
11 fileNums = 40
12
13 f o r (i = 0 ; i< fileNums ; i = i +1) {
14
15 p o s i t i o n b f = subs t r ing (fileNames [i] , 0 , 1 1) +”\\bf000 . t i f f f i l e =bf

s o r t ” ;

37

16 // p o s i t i o n r e d = subs t r ing (fileNames [i] , 0 , 1 1) +”\\ red000 . t i f f f i l e =
red s o r t ” ;

17 // p o s i t i o n g r e e n = subs t r ing (fileNames [i] , 0 , 1 1) +”\\green000 . t i f f
f i l e =green s o r t ” ;

18
19 // s e t the iput f i l e
20 input open = ”open=” + d i r e c t o r y + p o s i t i o n b f ;
21 // p r i n t (input open) ;
22
23 //read in the image f i l e s
24 run (” Image Sequence . . . ” , input open) ;
25
26 //run (” Br ightness/Contrast . . . ”) ;
27 //run (” Enhance Contrast ” , ” sa tura ted = 0 . 3 5 ”) ;
28
29 //convert and save the image f i l e to the movie f i l e (. avi)
30 output save = ” compression=JPEG frame=10 save=” + d i r e c t o r y +

subs t r ing (fileNames [i] , 0 , 1 1) +” b f . avi ” ;
31 // p r i n t (output save) ;
32
33 //save output movie in the same d i r e c t o r y
34 run (”AVI . . . ” , output save) ;
35
36 // c l o s e in case runout the memory
37 // c l o s e () ;
38 run (” Close All ”) ;
39 }

VII .3 Scripts in R

Scripts in R are used to plot the results figures. The input files are the output files from the main program.

1 #===
2 #===================Test ing===============
3 #===
4 setwd (’/Users/JiamingYU/Desktop/SummerProject/pos 0/output/

a n a l y c e l l s c a n 0 p e t r i 0 p o s i t i o n 0 0 0 . 1 7 May2016 12 . 3 8 . 3 6 / ’)
5 #setwd (’/Users/JiamingYU/Desktop/SummerProject/pos 1/output/ ’)
6 #setwd (’/Users/JiamingYU/Desktop/SummerProject/pos 2/output/ ’)
7
8 data green sum = read . t a b l e (’ Green sum . t x t ’)
9 data red sum = read . t a b l e (’ Red sum . t x t ’)

10 data green mean = read . t a b l e (’ Green mean . t x t ’)
11 data red mean = read . t a b l e (’ Red mean . t x t ’)
12 p l o t (data green sum$V1/mean(data green sum$V1) , c o l = ’ green ’ , type = ’ l ’ ,
13 ylab= ’ R e l a t i v e value ’ , x lab = ’ Time index ’ , l t y =1 , lwd=2)
14 l i n e s (data red sum$V1/mean(data red sum$V1) , c o l = ’ red ’ , l t y =2 , lwd=2)
15 grid (1 0 , 1 0 , l t y = 6 , c o l = ” c o r n s i l k 4 ”)

38

16
17
18 #==
19 #=================== P l o t the matlab output data================
20 #==
21 l i b r a r y (R . matlab)
22 setwd (’/Users/JiamingYU/Desktop/SummerProject/OutputData ’)
23
24 data mat <− readMat (’ Analys is data1 . mat ’)
25 pdf (’ Analys i s data1 outputs . pdf ’ , width =6 , height =6 , paper= ’ s p e c i a l ’)
26 f o r (i in c (7 6 : 8 0)) {
27 t e s t 1 = as . vec tor (data mat$output . v a r i a b l e [[i]]) [[1]] [1 ,]
28 t e s t 2 = as . vec tor (data mat$output . v a r i a b l e [[i + 1 0]]) [[1]] [1 ,]
29
30 p l o t (t e s t 1 /mean(t e s t 1) , c o l = ’ green ’ , type = ’ l ’ ,
31 ylab= ’ R e l a t i v e value ’ , x lab = ’ Time index ’ , l t y =1 , lwd=2 ,
32 main = paste (’ Test a n a l y s i s data1 , P o s i t i o n = ’ , i −70))
33 l i n e s (t e s t 2 /mean(t e s t 2) , c o l = ’ red ’ , l t y =2 , lwd=2)
34 grid (1 0 , 1 0 , l t y = 6 , c o l = ” c o r n s i l k 4 ”)
35 legend (’ t o p l e f t ’ , c (’ Green sum ’ , ’Red sum ’) , c o l =c (’ green ’ , ’ red ’) , l t y = c (1 , 1) ,

lwd=2 , cex =1 , bty = ’n ’)
36 }
37 dev . o f f ()
38
39 data mat <− readMat (’ Analys is data2 . mat ’)
40 pdf (’ Analys i s data2 outputs . pdf ’ , width =6 , height =6 , paper= ’ s p e c i a l ’)
41 f o r (i in c (7 7 : 8 8)) {
42 t e s t 1 = as . vec tor (data mat$output . v a r i a b l e [[i]]) [[1]] [1 ,]
43 t e s t 2 = as . vec tor (data mat$output . v a r i a b l e [[i + 1 1]]) [[1]] [1 ,]
44 p l o t (t e s t 1 /mean(t e s t 1) , c o l = ’ green ’ , type = ’ l ’ ,
45 ylab= ’ R e l a t i v e value ’ , x lab = ’ Time index ’ , l t y =1 , lwd=2 ,
46 main = paste (’ Test a n a l y s i s data2 , P o s i t i o n = ’ , i −70) , ylim = c (0 , 5))
47 l i n e s (t e s t 2 /mean(t e s t 2) , c o l = ’ red ’ , l t y =2 , lwd=2)
48 grid (1 0 , 1 0 , l t y = 6 , c o l = ” c o r n s i l k 4 ”)
49 legend (’ t o p l e f t ’ , c (’ Green sum ’ , ’Red sum ’) , c o l =c (’ green ’ , ’ red ’) , l t y = c (1 , 1)

, lwd=2 , cex =1 , bty = ’n ’)
50 }
51 dev . o f f ()
52
53
54
55 #===
56 #=======red channel data==================
57 #===
58 #Draw the compare of the d i f f e r n e n t method (red s i g n a l)
59 N=120
60 x = seq (0 , N, length=N)
61 l i b r a r y (R . matlab)

39

62 setwd (’/Users/JiamingYU/Desktop/SummerProject/OutputRed ’)
63 data red <− readMat (’ G a u s s i a n r e s u l t s r e d . mat ’)
64
65 # the manual approach
66 a = as . vec tor (data red$output . v a r i a b l e [[1]]) [1]
67 b = as . vec tor (data red$output . v a r i a b l e [[1]]) [2]
68 c = as . vec tor (data red$output . v a r i a b l e [[1]]) [3]
69 f 1 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2)
70 p l o t (x , f1 red , ylim = range (0 , 5) , type= ’ l ’ , c o l = ’ red ’ , pch =1 , xlab = ’ Frames ’ ,

ylab = ’ Cdt1 (Red) s i g n a l ’ , lwd=3)
71 t i t l e (main = ’ Auto− and manual− method compare (red channel) ’)
72 a b l i n e (v=23 , lwd=1 , c o l =”red ” , l t y =2)
73
74 #Auto mask1
75 a = as . vec tor (data red$output . v a r i a b l e [[2]]) [1]
76 b = as . vec tor (data red$output . v a r i a b l e [[2]]) [2]
77 c = as . vec tor (data red$output . v a r i a b l e [[2]]) [3]
78 f 2 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
79 points (x , f2 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ green ’ , pch =2 , l t y =2 , lwd=2)
80 a b l i n e (v=b [1] , lwd=1 , c o l =”green ” , l t y =2)
81
82 #Auto mask2
83 a = as . vec tor (data red$output . v a r i a b l e [[3]]) [1]
84 b = as . vec tor (data red$output . v a r i a b l e [[3]]) [2]
85 c = as . vec tor (data red$output . v a r i a b l e [[3]]) [3]
86 f 3 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
87 points (x , f3 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ orange ’ , pch =3 , l t y =3 , lwd=2)
88 a b l i n e (v=b [1] , lwd=1 , c o l =”orange ” , l t y =2)
89
90 #Auto mask3
91 a = as . vec tor (data red$output . v a r i a b l e [[4]]) [1]
92 b = as . vec tor (data red$output . v a r i a b l e [[4]]) [2]
93 c = as . vec tor (data red$output . v a r i a b l e [[4]]) [3]
94 f 4 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
95 points (x , f4 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ blue ’ , pch =4 , l t y =4 , lwd=2)
96 a b l i n e (v=b [1] , lwd=1 , c o l =” blue ” , l t y =2)
97
98 grid (1 0 , 1 0 , l t y = 6 , c o l = ” c o r n s i l k 4 ”)
99 legend (’ t o p r i g h t ’ , c (’ Manual−method ’ , ’ Auto−1(Gaussian−canny) ’ , ’ Auto−2(

Laplacian−sobel) ’ , ’ Auto−3(Motion−zerocross) ’) , c o l =c (’ red ’ , ’ green ’ , ’ orange
’ , ’ blue ’) ,

100 l t y = c (1 , 2 , 3 , 4) , lwd=2 , cex =1 , bty = ’n ’)
101
102 #===
103 #=======green channel data==================

40

104 #===
105 #Draw the compare of the d i f f e r n e n t method (green s i g n a l)
106 N=120
107 x = seq (0 , N, length=N)
108 l i b r a r y (R . matlab)
109 setwd (’/Users/JiamingYU/Desktop/SummerProject/OutputRed ’)
110 data green <− readMat (’ G a u s s i a n r e s u l t s g r e e n . mat ’)
111
112 # the manual approach
113 a = as . vec tor (data green$output . v a r i a b l e [[1]]) [1]
114 b = as . vec tor (data green$output . v a r i a b l e [[1]]) [2]
115 c = as . vec tor (data green$output . v a r i a b l e [[1]]) [3]
116 f 1 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2)
117 p l o t (x , f1 red , ylim = range (0 , 5) , type= ’ l ’ , c o l = ’ green ’ , pch =1 , xlab = ’ Frames ’ ,

ylab = ’ Geminin (Green) s i g n a l ’ , lwd=3)
118 t i t l e (main = ’ Auto− and manual− method compare (green channel) ’)
119
120 #Auto mask1
121 a = as . vec tor (data green$output . v a r i a b l e [[2]]) [1]
122 b = as . vec tor (data green$output . v a r i a b l e [[2]]) [2]
123 c = as . vec tor (data green$output . v a r i a b l e [[2]]) [3]
124 f 2 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
125 points (x , f2 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ red ’ , pch =2 , l t y =2 , lwd=2)
126
127 #Auto mask2
128 a = as . vec tor (data green$output . v a r i a b l e [[3]]) [1]
129 b = as . vec tor (data green$output . v a r i a b l e [[3]]) [2]
130 c = as . vec tor (data green$output . v a r i a b l e [[3]]) [3]
131 f 3 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
132 points (x , f3 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ orange ’ , pch =3 , l t y =3 , lwd=2)
133
134 #Auto mask3
135 a = as . vec tor (data green$output . v a r i a b l e [[4]]) [1]
136 b = as . vec tor (data green$output . v a r i a b l e [[4]]) [2]
137 c = as . vec tor (data green$output . v a r i a b l e [[4]]) [3]
138 f 4 r e d = a [1]∗ exp (− ((x−b [1]) /c [1]) ˆ 2) +a [2]∗ exp (− ((x−b [2]) /c [2]) ˆ 2) +a [3]∗ exp

(− ((x−b [3]) /c [3]) ˆ 2)
139 points (x , f4 red , ylim = range (0 , 3) , type= ’ l ’ , c o l = ’ blue ’ , pch =4 , l t y =4 , lwd=2)
140
141 grid (1 0 , 1 0 , l t y = 6 , c o l = ” c o r n s i l k 4 ”)
142 legend (’ t o p r i g h t ’ , c (’ Manual−method ’ , ’ Auto−1(Gaussian−canny) ’ , ’ Auto−2(

Laplacian−sobel) ’ , ’ Auto−3(Motion−zerocross) ’) , c o l =c (’ green ’ , ’ red ’ , ’ orange
’ , ’ blue ’) ,

143 l t y = c (1 , 2 , 3 , 4) , lwd=2 , cex =1 , bty = ’n ’)

41

VIII Appendix II: Additional figures

Figure 23: Photos for FUCCI experiment set up

Figure 24: General process for automatic image analysis

42

	Introduction:
	FUCCI reporter system
	Research overview
	Research objectives

	Automatic image analysis:
	Purpose of design:
	Data preparation:
	Experiment
	Channels in `.movie' file
	Automatic video generator

	Program design:
	Initialization
	Region selection
	Flow chart:
	Analysis method
	Mask building:
	Fluorescences measure

	Segmentation techniques:
	The `combination algorithm':
	Filtering method:
	Edge detection:

	Results evaluation:
	Calculate similarity

	Extraction of cell cycle parameters with FUCCI expression
	Gating information:
	Manual selection method:
	General process:
	Curve fitting:
	Gating threshold:

	Automatic method:
	General process:
	Results of automatic analysis methods:

	Compare with the manual selection and automatic analysis method:
	Method comparison:
	Results comparation:

	Discussion:
	Green channel problem - calculating intensive local maximum to enhance the peak region
	Cell cluster segmentation - using edge-highlighted method separate individual cell in a cluster
	Dead cell recognition - building a machine learning mask database

	Conclusions and future work:
	Conclusion
	Future work

	Acknowledgements:
	Appendix I: Program code and scripts
	Automatic image analysis- Matlab code
	Scripts in ImageJ
	Scripts in R

	Appendix II: Additional figures

